[1] | P.K. Mukherjee, V. Kumar, N.S. Kumar, M. Heinrich, The Ayurvedic medicine Clitoria ternatea-From traditional use to scientific assessment, J. Ethnopharmacol. 120 (2008) 291-301. |
|
[2] | N.K. Sethiya, M.K.M.M. Raja, S.H. Mishra, Antioxidant markers based TLC-DPPH differentiation on four commercialized botanical sources of Shankhpushpi (A Medhya Rasayana): A preliminary assessment, J. Adv. Pharm. Technol. Res. 4 (2013) 25-30. |
|
[3] | J. Malik, M. Karan, K. Vasisht, Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi, Pharm. Biol. 49 (2011) 1234-1242. |
|
[4] | A. Nahata, U.K. Patil, V.K. Dixit, Effect of Evolvulus alsinoides Linn. on learning behavior and memory enhancement activity in rodents, Phyther. Res. 24 (2010) 486-493. |
|
[5] | N.K. Sethiya, A. Nahata, V.K. Dixit, S.H. Mishra, Cognition boosting effect of Canscora decussata (a South Indian Shankhpushpi), Eur. J. Integr. Med. 4 (2012) e113-e121. |
|
[6] | R.A. Jain, S.H. Shukla, Pharmacognostic evaluation and phytochemical studies on stem of Clitoria ternatea linn, Pharmacogn. J. 3 (2011) 62-66. |
|
[7] | A.L. Hopkins, Network pharmacology: The next paradigm in drug discovery, Nat. Chem. Biol. 4 (2008) 682-690. |
|
[8] | U. Chandran, N. Mehendale, G. Tillu, B. Patwardhan, Network Pharmacology of Ayurveda Formulation Triphala with Special Reference to Anti-Cancer Property, Comb. Chem. High Throughput Screen. 18 (2015) 846-854. |
|
[9] | Y. Nakamura, F. Mochamad Afendi, A. Kawsar Parvin, N. Ono, K. Tanaka, A. Hirai Morita, T. Sato, T. Sugiura, M. Altaf-Ul-Amin, S. Kanaya, KNApSAcK metabolite activity database for retrieving the relationships between metabolites and biological activities, Plant Cell Physiol. 55 (2014). |
|
[10] | U.S. Department of Agriculture, Dr. Duke’s Phytochemical and Ethnobotanical Databases, Agric. Res. Serv. (n.d.) Home page. https://phytochem.nal.usda.gov/. |
|
[11] | S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem 2019 update: Improved access to chemical data, Nucleic Acids Res. 47 (2019) D1102-D1109. |
|
[12] | A. Daina, O. Michielin, V. Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017). |
|
[13] | F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, P.W. Lee, Y. Tang, AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties, J. Chem. Inf. Model. 52 (2012) 3099-3105. |
|
[14] | D.S. Wishart, Y.D. Feunang, A.C. Guo, E.J. Lo, A. Marcu, J.R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. MacIejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, Di. Le, A. Pon, C. Knox, M. Wilson, DrugBank 5.0: A major update to the DrugBank database for 2018, Nucleic Acids Res. 46 (2018) D1074-D1082. |
|
[15] | M.K. Gilson, T. Liu, M. Baitaluk, G. Nicola, L. Hwang, J. Chong, BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology, Nucleic Acids Res. 44 (2016) D1045-D1053. |
|
[16] | A. Gaulton, A. Hersey, M.L. Nowotka, A. Patricia Bento, J. Chambers, D. Mendez, P. Mutowo, F. Atkinson, L.J. Bellis, E. Cibrian-Uhalte, M. Davies, N. Dedman, A. Karlsson, M.P. Magarinos, J.P. Overington, G. Papadatos, I. Smit, A.R. Leach, The ChEMBL database in 2017, Nucleic Acids Res. 45 (2017) D945-D954. |
|
[17] | UniProt: a worldwide hub of protein knowledge, Nucleic Acids Res. 47 (2019) D506–D515. |
|
[18] | K.I. Morley, G.W. Montgomery, The genetics of cognitive processes: Candidate genes in humans and animals, Behav. Genet. 31 (2001) 511-531. |
|
[19] | D. Warde-Farley, S.L. Donaldson, O. Comes, K. Zuberi, R. Badrawi, P. Chao, M. Franz, C. Grouios, F. Kazi, C.T. Lopes, A. Maitland, S. Mostafavi, J. Montojo, Q. Shao, G. Wright, G.D. Bader, Q. Morris, The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function, Nucleic Acids Res. 38 (2010) W214-W220. |
|
[20] | D.W. Huang, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc. 4 (2009) 44-57. |
|
[21] | S. Wei, X. Zhou, M. Niu, H. Zhang, X. Liu, R. Wang, P. Li, H. Li, H. Cai, Y. Zhao, Network pharmacology exploration reveals the bioactive compounds and molecular mechanisms of Li-Ru-Kang against hyperplasia of mammary gland, Mol. Genet. Genomics. 294 (2019) 1159-1171. |
|
[22] | M. Kanehisa, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res. 28 (2000) 27-30. |
|
[23] | J. Piñero, J.M. Ramírez-Anguita, J. Saüch-Pitarch, F. Ronzano, E. Centeno, F. Sanz, L.I. Furlong, The DisGeNET knowledge platform for disease genomics: 2019 update., Nucleic Acids Res. (2019). |
|
[24] | P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: A software Environment for integrated models of biomolecular interaction networks, Genome Res. 13 (2003) 2498-2504. |
|
[25] | Q. Ge, L. Chen, M. Tang, S. Zhang, L. Liu, L. Gao, S. Ma, M. Kong, Q. Yao, F. Feng, K. Chen, Analysis of mulberry leaf components in the treatment of diabetes using network pharmacology, Eur. J. Pharmacol. 833 (2018) 50-62. |
|
[26] | P. Gong, H. Zhang, W. Chi, W. Ge, K. Zhang, A. Zheng, X. Gao, F. Zhang, An association study on the polymorphisms of dopaminergic genes with working memory in a healthy Chinese Han population, Cell. Mol. Neurobiol. 32 (2012) 1011-1019. |
|
[27] | R. Bernabeu, L. Bevilaqua, P. Ardenghi, E. Bromberg, P. Schmitzt, M. Bianchin, I. Izquierdo, J.H. Medina, Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats, Proc. Natl. Acad. Sci. U. S. A. 94 (1997) 7041-7046. |
|
[28] | I. Bethus, D. Tse, R.G.M. Morris, Dopamine and memory: Modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates, J. Neurosci. 30 (2010) 1610-1618. |
|
[29] | K.A. Kempadoo, E. V. Mosharov, S.J. Choi, D. Sulzer, E.R. Kandel, Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 14835-14840. |
|
[30] | C.H. Bailey, D. Bartsch, E.R. Kandel, Toward a molecular definition of long-term memory storage, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 13445-13452. |
|
[31] | S.D. Schmidt, C.R.G. Furini, C.G. Zinn, L.E. Cavalcante, F.F. Ferreira, J.A.K. Behling, J.C. Myskiw, I. Izquierdo, Modulation of the consolidation and reconsolidation of fear memory by three different serotonin receptors in hippocampus, Neurobiol. Learn. Mem. 142 (2017) 48-54. |
|
[32] | C.M. Alberini, Transcription factors in long-term memory and synaptic plasticity, Physiol. Rev. 89 (2009) 121-145. |
|
[33] | P.C. Orban, P.F. Chapman, R. Brambilla, Is the Ras-MAPK signalling pathway necessary for long-term memory formation?, Trends Neurosci. 22 (1999) 38-44. |
|
[34] | J.C.P. Yin, T. Tully, CREB and the formation of long-term memory, Curr. Opin. Neurobiol. 6 (1996) 264-268. |
|
[35] | V. Lakhina, R.N. Arey, R. Kaletsky, A. Kauffman, G. Stein, W. Keyes, D. Xu, C.T. Murphy, Genome-wide functional analysis of CREB/Long-term memory-dependent transcription reveals distinct basal and memory gene expression programs, Neuron. 85 (2015) 330-345. |
|
[36] | D.A. Frank, M.E. Greenberg, CREB: A mediator of long-term memory from mollusks to mammals, Cell. 79 (1994) 5-8. |
|
[37] | S. Abdul, N. Adhikari, S. Kotagiri, T. Jha, B. Ghosh, European Journal of Medicinal Chemistry Histone deacetylase 3 inhibitors in learning and memory processes with special emphasis on benzamides, Eur. J. Med. Chem. 166 (2019) 369-380. |
|
[38] | N.M. Grissom, F.D. Lubin, The dynamics of HDAC activity on memory formation., Cellscience. 6 (2009) 44-48. http://www.ncbi.nlm.nih.gov/pubmed/19777123 (accessed October 22, 2019). |
|