American Journal of Public Health Research
ISSN (Print): 2327-669X ISSN (Online): 2327-6703 Website: https://www.sciepub.com/journal/ajphr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Public Health Research. 2024, 12(3), 48-53
DOI: 10.12691/ajphr-12-3-2
Open AccessArticle

Methicillin-Resistant Staphylococcus Aureus (Mrsa) Remains a Major Threat to Public Health

Mahendra Pal1, , Tesfaye Rebuma2, Temesgen Regassa3 and Ravindra Zende4

1Narayan Consultancy of Veterinary Public Health, and Microbiology, Bharuch, Gujarat, India

2Shaggar City administration Sebeta Sub city Agricultural office, Sebeta, Oromia, Ethiopia

3East Wallaga Zone, Wayu Tuka District Agricultural Office, Nekemte, Oromia, Ethiopia

4Department of Veterinary Public Health and Epidemiology, Mumbai Veterinary College, Mumbai, India

Pub. Date: August 08, 2024

Cite this paper:
Mahendra Pal, Tesfaye Rebuma, Temesgen Regassa and Ravindra Zende. Methicillin-Resistant Staphylococcus Aureus (Mrsa) Remains a Major Threat to Public Health. American Journal of Public Health Research. 2024; 12(3):48-53. doi: 10.12691/ajphr-12-3-2

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) represents a major public health challenge due to its antibiotic resistance and potential for severe infections in both humans and animals. This review examines the current state of MRSA as a global health threat, emphasizing its virulence factors, transmission mechanisms, and impact on public health. MRSA's resistance to methicillin and other antibiotics confounds treatment and control efforts primarily due to the encoding of penicillin-binding protein 2a (PBP2a) by the mecA gene which has a low affinity for β-lactams, resulting in resistance to the entire class of antibiotics. The ability of the bacterium to cause a spectrum of infections, from mild skin conditions to life-threatening diseases like toxic shock syndrome, pneumonia, , bacteremia and , highlights its clinical significance. MRSA's spread is facilitated by its presence in healthcare settings, community environments, and livestock, with significant implications for food safety and public health. The review underscores the urgent need for enhanced surveillance, novel treatment strategies, and effective infection control measures to combat MRSA's growing threat.

Keywords:
bacteremia endocarditis healthcare-associated infections methicillin-resistant public health Staphylococcus aureus

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Weese, J. S. and Van Duijkeren E. (2010). Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Veterinary Microbiology, 140(3-4): 418-429.
 
[2]  Taylor, T. A. and Unakal C. G. (2018). Staphylococcus aureus. Stat Pearls, Treasure Island.. https:// www.ncbi.nlm.nih.gov/ books/NBK441868/. Accessed 15 Jun 2024.
 
[3]  Bruce, S. A., Smith, J. T., Mydosh, J. L., Ball, J., Needle, D. B., Gibson, R. and Andam C. P. (2022). Shared antibiotic resistance and virulence genes in Staphylococcus aureus from diverse animal hosts. Scientific Reports; 12(1): 1-11.
 
[4]  Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T.L. and Fowler Jr V. G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Review; 28(3): 603-661.
 
[5]  Schuler, F., Barth, P. J., Niemann, S. and Schaumburg F. (2021). A Narrative Review on the Role of Staphylococcus aureus Bacteriuria in S. aureus Bacteremia. Infectious Diseases; 8(6): 1-8.
 
[6]  Hoque, M. N., Istiaq, A., Rahman, M. S., Islam, M. R., Anwar, A., Siddiki, A.Z., Sultana, M., Crandall, K. A. and Hossain M. A. (2020). Microbiome dynamics and genomic determinants of bovine mastitis. Genomics; 112(6): 188-203.
 
[7]  Hoque, M. N., Talukder, A. K., Saha, O., Hasan, M. M., Sultana, M., Rahman, A.A. and Das, Z. C. (2022). Antibiogram and virulence profiling reveals multidrug resistant Staphylococcus aureus as the predominant aetiology of subclinical mastitis in riverine buffaloes. Veterinary Medicine and Science; 8(6): 2631-2645.
 
[8]  Ballah, F.M., Islam, M.S., Rana, M.L., Ferdous, F.B., Ahmed, R., Pramanik, P.K., Karmoker, J., Ievy, S., Sobur, M.A., Siddique, M.P. and Khatun M. M. (2022). Phenotypic and genotypic detection of biofilm-forming Staphylococcus aureus from different food sources in Bangladesh. Biology.; 11(7): 1-13.
 
[9]  Fitzgerald J. R. (2012). Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends in Microbiology; 20(4): 192-198.
 
[10]  Fooladi, A.A., Ashrafi, E., Tazandareh, S.G., Koosha, R.Z., Rad, H.S., Amin, M., Soori, M., Larki, R.A., Choopani, A. and Hosseini H. M. (2015). The distribution of pathogenic and toxigenic genes among MRSA and MSSA clinical isolates. Microbial Pathogenesis; 81: 60-66.
 
[11]  Thomer, L., Schneewind, O. and Missiakas D. (2016). Pathogenesis of Staphylococcus aureus bloodstream infections. Annual Review of Pathology: Mechanism of Disease. 11(1): 343-364.
 
[12]  Lakhundi, S., and Zhang K. (2018). Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clinical Microbiology Review.; 31(4): 110-128.
 
[13]  WHO. (2014). Antimicrobial resistance: Global report on surveillance. World Health Organization, Geneva, Switzerland. https:// www.who.int/antimicrobial-resistance/ publications/ surveillancereport/ en/. Accessed 8 Jul 2024.
 
[14]  Murray, C.J., Ikuta, K.S., Sharara, F., Swetschinski, L., Aguilar, G.R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E. and Johnson S.C. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet; 399(10325):629-655.
 
[15]  Hassoun, A., Linden, P.K. and Friedman B. (2017). Incidence, prevalence, and management of MRSA bacteremia across patient populations a review of recent developments in MRSA management and treatment. Critical Care; 21: 1-10.
 
[16]  Abebe, A.A. and Birhanu A.G. (2023). Methicillin-resistant Staphylococcus aureus: molecular mechanisms underlying drug resistance development and novel strategies to Combat. Infection and Drug Resistance. 16:7641-7662.
 
[17]  Algammal, A.M., Hetta, H.F., Elkelish, A., Alkhalifah, D.H., Hozzein, W.N., Batiha, G.E., El Nahhas, N. and Mabrok M.A. (2020). Methicillin-Resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infection and Drug Resistance, 133255-3265.
 
[18]  Hindy, J.R., Quintero-Martinez, J.A., Lee, A.T., Scott, C.G., Gerberi, D.J., Mahmood, M., DeSimone, D.C. and Baddour L.M. (2022). Incidence trends and epidemiology of Staphylococcus aureus bacteremia: a systematic review of population-based studies. Cureus.; 14(5): e25460.
 
[19]  O’Hara, L.M., Calfee, D.P., Miller, L.G., Pineles, L., Magder, L.S., Johnson, J.K., Morgan, D.J. and Harris A.D. (2019). Optimizing contact precautions to curb the spread of antibiotic-resistant bacteria in hospitals: a multicenter cohort study to identify patient characteristics and healthcare personnel interactions associated with transmission of methicillin-resistant Staphylococcus aureus. Clinical Infectious Diseases, 69(3): 171-177.
 
[20]  Weber, D.J. and Rutala W.A. (2013). Understanding and preventing transmission of healthcare-associated pathogens due to the contaminated hospital environment. Infection Control and Hospital Epidemiology, 34(5): 449-452.
 
[21]  Popovich, K.J., Green, S.J., Okamoto, K., Rhee, Y., Hayden, M.K., Schoeny, M., Snitkin, E.S. and Weinstein R.A. (2021). MRSA transmission in intensive care units: genomic analysis of patients, their environments, and healthcare workers. Clinical Infectious Diseases. 72(11): 1879-1887.
 
[22]  Al-Kharabsheh, R. and Ahmad M. (2022). Skin and mucous membranes colonisation with Staphylococcus aureus or MRSA as a risk factor for surgical site infections in elective Caesarean Section. Journal of Obstetrics and Gynaecology, 42(5): 888-893.
 
[23]  Nataraj, B.H. and Mallappa R.H. (2021). Antibiotic resistance crisis: an update on antagonistic interactions between probiotics and methicillin-resistant Staphylococcus aureus (MRSA). Current Microbiology; 78(6): 2194-2211.
 
[24]  Nelson, R.E., Slayton, R.B., Stevens, V.W., Jones, M.M., Khader, K., Rubin, M.A., Jernigan, J.A. and Samore M.H. (2017). Attributable mortality of healthcare-associated infections due to multidrug-resistant gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Infection Control and Hospital Epidemiology.; 38(7): 848-856.
 
[25]  David, M.Z. and Daum, R.S. (2010). Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clinical Microbiology Reviews, 23(3): 616-687.
 
[26]  Soe, P.E., Han, W.W., Sagili, K.D., Satyanarayana, S., Shrestha, P., Htoon, T.T. and Tin H.H. (2021). High prevalence of methicillin-resistant Staphylococcus aureus among healthcare facilities and its related factors in Myanmar (2018–2019).. Tropical Medicine and Infectious Disease, 6(2): 1-13.
 
[27]  Tang, S.S., Apisarnthanarak, A. and Hsu L.Y. (2014). Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community-and healthcare-associated multidrug-resistant bacteria. Advanced Drug Delivery Reviews, 78: 3-13.
 
[28]  Matamoros-Recio, A., Franco-Gonzalez, J.F., Forgione, R.E., Torres-Mozas, A., Silipo, A. and Martín-Santamaría S. (2021). Understanding the antibacterial resistance: Computational explorations in bacterial membranes. ACS Omega.; 6(9): 6041-6054.
 
[29]  Abushaheen, M.A., Fatani, A.J., Alosaimi, M., Mansy, W., George, M., Acharya, S., Rathod, S., Divakar, D.D., Jhugroo, C., Vellappally, S. and Khan A.A. (2020). Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month; 66(6): 100971.
 
[30]  Saha, M. and Sarkar A. (2021). Review on multiple facets of drug resistance: a rising challenge in the 21st century. Journal of Xenobiotics, 11(4): 197-214.
 
[31]  Christaki, E., Marcou, M. and Tofarides A. (2020). Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. Journal Of Molecular Evolution, 88(1): 26-40.
 
[32]  Morrison, L. and Zembower T.R. (2020). Antimicrobial resistance. Gastrointestinal Endoscopy Clinics, 30(4): 619-635.
 
[33]  Silva, V., Araújo, S., Monteiro, A., Eira, J., Pereira, J.E., Maltez, L., Igrejas, G., Lemsaddek, T.S. and Poeta, P. (2023). Staphylococcus aureus and MRSA in Livestock: Antimicrobial Resistance and Genetic Lineages. Microorganisms, 11, 124.
 
[34]  Lee, A.S., De Lencastre, H. and Garau J. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews Disease Primers, 4(1): 1–23.
 
[35]  Bush, K. and Bradford P.A. (2020)., Epidemiology of β-lactamase-producing pathogens. Clinical Microbiology Review. 33(2): 10-128.
 
[36]  Fishovitz, J., Hermoso, J.A., Chang, M. and Mobashery S. (2014). Penicillin‐binding protein 2a of methicillin‐resistant Staphylococcus aureus. IUBMB Life, 66(8): 572-577.
 
[37]  Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M. and Fowler Jr, V. G. (2019). Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology, 17(4)., 203-218.
 
[38]  Larsen, J., Raisen, C.L., Ba, X., Sadgrove, N.J., Padilla-González, G.F., Simmonds, M.S., Loncaric, I., Kerschner, H., Apfalter, P., Hartl, R. and Deplano A. (2022). Emergence of methicillin resistance predates the clinical use of antibiotics. Nature.; 602(7895): 135-141.
 
[39]  Anjum, M.F., Marco-Jimenez, F., Duncan, D., Marín, C., Smith, R.P. and Evans S.J. (2019). Livestock-associated methicillin-resistant Staphylococcus aureus from animals and animal products in the UK. Frontiers Microbiology, 10: 1-10.
 
[40]  Foster T.J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews, 41(3): 430-449.
 
[41]  Crombé, F., Argudín, M.A., Vanderhaeghen, W., Hermans, K., Haesebrouck, F., and Butaye P. (2013). Transmission dynamics of methicillin-resistant Staphylococcus aureus in pigs. Frontiers Microbiology, 4: 57: 1-21.
 
[42]  Pantosti A. (2012). Methicillin-resistant Staphylococcus aureus associated with animals and its relevance to human health. Frontiers Microbiology.; 3: 1-12.
 
[43]  Takahashi, N., Nishida, H., Kato, H., Sakata, Y. and Uchiyama T. (1998). Exanthematous disease induced by toxic shock syndrome toxin 1 in the early neonatal period. The Lancet, 351(9116): 1614-169.
 
[44]  Klevens, R.M., Morrison, M.A., Nadle, J., Petit, S., Gershman, K., Ray, S., Harrison, L.H., Lynfield, R., Dumyati, G., Townes, J.M. and Craig A.S. (2007). Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Journal of American Medical Association 298(15): 1763-1771.
 
[45]  Hennekinne, J.A., De Buyser, M.L. and Dragacci S. (2012). Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiology Review. 36(4): 815-836.
 
[46]  Grinberg, A., Hittman, A., Leyland, M., Rogers, L. and Le Quesne B. (2004). Epidemiological and molecular evidence of a monophyletic infection with Staphylococcus aureus causing a purulent dermatitis in a dairy farmer and multiple cases of mastitis in his cows. Epidemiology and Infection; 132(3): 507-513.
 
[47]  Lee J.H. (2003). Methicillin (oxacillin).-resistant Staphylococcus aureus strains isolated from major food animals and their potential transmission to humans. Applied and Environmental Microbiology, 69(11): 6489-6494.
 
[48]  Holden, M.T., Hsu, L.Y., Kurt, K., Weinert, L.A., Mather, A.E., Harris, S.R., Strommenger, B., Layer, F., Witte, W., De Lencastre, H. and Skov R. (2013). A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Research, 23(4): 653-664.
 
[49]  Peton, V., Bouchard, D.S., Almeida, S., Rault, L., Falentin, H., Jardin, J., Jan, G., Hernandez, D., François, P., Schrenzel, J. and Azevedo V. (2014). Fine-tuned characterization of Staphylococcus aureus Newbould 305, a strain associated with mild and chronic mastitis in bovines. Veterinary Research, 45: 1-5.
 
[50]  Vrieling, M., Koymans, K.J., Heesterbeek, D.A., Aerts, P.C., Rutten, V.P., De Haas, C.J., Van Kessel, K.P., Koets, A.P., Nijland, R. and Van Strijp J.A. (2015)., Bovine Staphylococcus aureus secretes the leukocidin LukMF′ to kill migrating neutrophils through CCR1. Micro Biology. 6(3): 10-128.
 
[51]  Le Loir, Y., Baron, F. and Gautier M. (2003). [i] Staphylococcus aureus and food poisoning. Genetics And Molecular Research, 2(1): 63-76.
 
[52]  Peles, F., Wagner, M., Varga, L., Hein, I., Rieck, P., Gutser, K., Keresztúri, P., Kardos, G., Turcsányi, I., Béri, B. and Szabó A. (2007). Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. International Journal of Food Microbiology, 118(2): 186-193.