American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: https://www.sciepub.com/journal/ajmse Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
Go
American Journal of Materials Science and Engineering. 2025, 13(1), 1-8
DOI: 10.12691/ajmse-13-1-1
Open AccessArticle

State of the Art of Bioreactor Technology and Mathematical Dimensioning Equations for Biogas Production

Haroun Ali Adannou1, 2, and Barka Ibrahim Mahamat3

1Department of Physics and Chemistry, Higher Teacher Training College of N’djamena; N’djamena-Chad

2African Laboratory for Sustainable Development Research. N’djaména-Chad

3Department of Mathematics and Computer Science, Higher Teacher Training College of N’djamena; N’djamena-Chad

Pub. Date: January 16, 2025

Cite this paper:
Haroun Ali Adannou and Barka Ibrahim Mahamat. State of the Art of Bioreactor Technology and Mathematical Dimensioning Equations for Biogas Production. American Journal of Materials Science and Engineering. 2025; 13(1):1-8. doi: 10.12691/ajmse-13-1-1

Abstract

The sizing of an anaerobic digester is generally a function of the main objectives pursued by anaerobic digestion, in relation to the available material, technological and economic resources, as well as the legislation in force. The main objective of the study of the sizing of an anaerobic digester is to optimize the treatment of organic waste and/or the production of methane. In this work we seek the theory of a technique for sizing a biodigester in order to store the biogas produced. To this end, we studied the design possibilities of different types of bioreactors that can be used for the production of biogas at the African Laboratory for Sustainable Development Research (AfricLab) and taken up at the laboratory of the Department of Physics and Chemistry, Ecole Normale Supérieure de N'djamena. Although the design technology is advanced, the aim of our work remains at the scale of a rudimentary study to be able to understand the simple ways and means of sizing and storing biogas, to do this an adapted table of the definitions and units of the parameters used in the equations for sizing was given. The laboratory work on the sizing of a biodigester and the storage time of the biogas produced required a small type of laboratory bioreactor of a few liters and fed with the real effluent considered. A ramp-up is carried out by following the yield of the biogas produced and measured according to the applied load. Based on this, we studied the different types of bioreactors in an industrial theoretical way and we presented them in the results and discussion section. This part has already been done on the work of BOUANIKA Nour el Imene & DJEDIA Arfa. Thus, a bibliographic synthesis is made for the production of this present scientific article.

Keywords:
sizing anaerobic digester storage biogas laboratory

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 13

References:

[1]  Joaneson Lacour. Valorisation de la fraction organique de résidus agricoles et autres déchets assimilés à l’aide de traitements biologiques anaérobies. Autre. INSA de Lyon; Université Quisqueya (Port-auPrince, Haïti), 2012. Français. ffNNT : 2012ISAL0026ff. fftel-00825479.
 
[2]  Hahn, H., Krautkremer, B., Hartmann, K., Wachendorf, M., 2014b. Review of concepts for a demand-driven biogas supply for flexible power generation. Renew. Sustain. Energy Rev. 29, 383–393.
 
[3]  Liebetrau, J., Clemens, J., Cuhls, C., Hafermann, C., Friehe, J., Weiland, P., Daniel-Gromke, J., 2010. Methane emissions from biogas-producing facilities within the agricultural sector. Eng. Life Sci. 10, 595–599.
 
[4]  Ryckebosch, E., Drouillon, M., Vervaeren, H., 2011. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35, 1633–1645.
 
[5]  MATA-ALVAREZ J. Fundamentals of the anaerobic digestion proches. In: MATA-ALVAREZ J. Biomethanization of the organic fraction of municipal solid wastes. Padstow, Cornwall, UK, 2002, pp. 1-20.
 
[6]  PAVLOSTATHIS S. G., GOSSETT J. M. Modeling alkali consumption and digestibility improvement from alkaline treatment of wheat straw. Biotechnology & Bioengineering, 1985, vol. 27, pp. 345-353.
 
[7]  ORTOLANI A. F., BENINCASA M., JUNIOR J. L. Biodigestores rurais: Modelos Indiano, Chinês e Batelada.: Jaboticabal: FCAV, UNESP, 1991, 35 p.
 
[8]  FLORENTINO H. D. O. Mathematical tool to size rural digesters. Scientia Agricola, 2003, vol. 60, n° 1, pp. 185-190.
 
[9]  Coudure R. et Castaing J. (1997), Bilan de fonctionnement d’une unité de méthanisation de lisier de porc, Journées Recherche Porcine en France.].[ Wikan W. T. Asari A. Ana N. et Elita R. (2009), Design and development of Biogas Reactor for farmer group scale, Indonesia Journal of Agriculture 2 (2), 121 – 128.
 
[10]  Al Seadi T. Rutz D. Pressl H. Köttner M. Finstarwalder T. Volk S et Janssen R. (2008), biogas handbook, University of southern Denmark.] [Sallustro J. L. (2009), Fiche n° 10 - Traitement anaérobie des déchets organiques, Programme régional pour la Gestion durable des zones Côtières des pays de l’océan indien/ Regional Programme for the sustainable Management of the Costal zones of countries of the indian ocean (ProGeCo/ReCoMAP.
 
[11]  Couturier, C., Berger, S., & Héraul, I., 2001, La digestion anaérobie des boues urbaines. Toulouse: Solagro.
 
[12]  Lukaszczyk, M. 2013, Déterminer la charge d’un moteur électrique est primordial pour l’efficacité énergétique. Récupéré sur PEI-France: https://www.pei-france.com/article/determiner-la-charge-dun-moteur-electrique-est primordial-pour-lefficacite-energetique.
 
[13]  EneriaCat. 2015, Gamme BIOGAZ-MG. Récupéré sur EneriaCat: http://www.eneria.fr/wp content/uploads/2012/09/Gamme-GE-Biogaz-MG_FR_STdC.pdf.
 
[14]  BOUANIKA Nour el Imene & DJEDIA Arfa 2020 : valorisation des boues de la station d’épuration d’ibn ziad constantine par dimensionnement d’un digesteur anaérobiE : Mémoire de Master en génie des procedes.
 
[15]  Jean El Achkar, “Méthanisation de marc de raisin . Caractérisation et optimisation du procédé et des prétraitements .,” Génie des procédés. Université de Bretagne Sud, 2018].
 
[16]  R. PHILIP, “La problématique risques et méthodologies opérationnelles des unités de méthanisation, tant agricoles, risques diffus, qu’industrielles,” L’école nationale superieure des officiers de Sapeurs-Pompiers, 2017.
 
[17]  J. Hess, “Valorisation qualité biogaz par fermenteur méthanogène et stratégie de régulation,” Université de NICE - SOPHIA ANTIPOLIS – UFR SCIENCES École, 2007.
 
[18]  G. Capson Tojo, “Valorisation des biodéchets alimentaires commerciaux par des procédés anaérobies,” Université de Montpellier, 2017.
 
[19]  Haroun Ali Adannou, Mamadou Ndiaye, Samba Koukouaré Prospert, Mahamat Bichara Abderaman, Abdelhamid Mahamat Ali, Lamine NDIAYE and Aboubacar Chedikh Beye, “Experimental Contribution to the Phenomena of Methanisation by Co-digestion of Organic Waste from the Residence of the Cheikh Anta Diop University in Dakar.” Applied Ecology and Environmental Sciences, vol. 7, no. 2 (2019): 56-65.
 
[20]  Moletta, R., & Torrijos, M. (1999). Traitement des effluents de la filière laitière. Techniques de l'Ingénieur.
 
[21]  BENSOUNA, M., & TAHRI, A. (2022). Amélioration du rendement en méthane de la boue de la ville d’Adrar par Co-digestion anaérobique (Doctoral dissertation, UNIVERSITE AHMED DRAIA-ADRAR).
 
[22]  Rajeshwari, K. V., Balakrishnan, M., Kansal, A., Lata, K., et Kishore, V. V. N. (2000). Technologie de pointe en matière de digestion anaérobie pour le traitement des eaux usées industrielles. Revues des énergies renouvelables et durables, 4(2), 135-156.
 
[23]  Seghezzo, L., Zeeman, G., van Lier, J. B., Hamelers, H. V. M. et Lettinga, G. (1998). Une revue : le traitement anaérobie des eaux usées dans les réacteurs UASB et EGSB. Technologie des bioressources, 65(3), 175-190.
 
[24]  Chen, H., Liu, G., Wang, K., Piao, C., Ma, X., et Li, X. K. (2021). Caractéristiques de la communauté microbienne dans le traitement des eaux usées de production d’oxytétracycline par système EGSB. Journal de la gestion de l’environnement, 295, 113055.
 
[25]  Mutombo, D. T. (2004, May). Internal circulation reactor: pushing the limits of anaerobic industrial effluents treatment technologies. In Proceedings of the 2004 Water Institute of Southern Africa (WISA) Biennial Conference (pp. 608-616). Water Institute of Southern Africa NPC.
 
[26]  Haroun Ali Adannou 2019 : Production industrielle du biogaz et valorisation énergétiques : Etude du digesteur à bâche utilisant les déchets d’abattoirs. ". PhD. Thesis.
 
[27]  Adannou, H.A., Goni, S., Abderaman, M.B., Khayal, M.Y., Khamis, A.A., Aidara, M., Kharouna, T. and Beye, A.C. (2019) Influence of Climate Temperature on the Valorization of Dung-Wastewater Slaughterhouse Biogas in Two Regions: In Chad and Senegal. Natural Resources , 10, 81-95.
 
[28]  Haroun Ali Adannou, Saka Goni, Etoungh Dimitri Manga, Mamadou Simina Drame, Lamine Ndiaye, Kharouna Talla, Aboubakar Chedikh Beye. Valorization Capacity of Slaughterhouse Waste in Biogas by a Tarpaulin Digester in Dakar, Senegal. American Journal of Environmental Protection. Vol. 8, No. 1, 2019, pp. 22-30.
 
[29]  Diana GARCIA-BERNET, Jean-Philippe STEYER et Nicolas BERNET Traitement anaérobie des effluents industriels liquides ; https://www.researchgate.net/publication/341667672.