American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Microbiological Research. 2018, 6(1), 1-8
DOI: 10.12691/ajmr-6-1-1
Open AccessArticle

Safety and Antioxidant Properties of Five Probiotic Lactobacillus plantarum Strains Isolated from the Digestive Tract of Honey Bees

Chancel Hector Momo Kenfack1, François Zambou Ngoufack1, , Pierre Marie Kaktcham1, Yan Rui Wang2, Taicheng Zhu2 and Li Yin2

1Laboratory of Biochemistry, Food Science, and Nutrition (LABPMAN), Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box: 67 Dschang, Cameroon

2China Academy of Science (CAS) Key Laboratory of Microbial, Physiological and Metabolic Engineering, Institute of Microbiology, China

Pub. Date: January 15, 2018

Cite this paper:
Chancel Hector Momo Kenfack, François Zambou Ngoufack, Pierre Marie Kaktcham, Yan Rui Wang, Taicheng Zhu and Li Yin. Safety and Antioxidant Properties of Five Probiotic Lactobacillus plantarum Strains Isolated from the Digestive Tract of Honey Bees. American Journal of Microbiological Research. 2018; 6(1):1-8. doi: 10.12691/ajmr-6-1-1


The objective of this study was the evaluation of safety, adhesion and antioxidant properties of five L. plantarum strains isolated from the digestive tract of honey bees. The set of variables generated from this study was submitted to a normalized Pearson (n) Principal Component Analysis (PCA). The five L. plantarum strains showed no gelatinase activity and were checked to be non-hemolytic. They were susceptible to chloramphenicol, amoxicillin, penicillin G and tetracycline. The MICs were ranged between 1-4 µg/ml for erythromycin and resistance was observed among 80% of strains (L. plantarum H15, H21, H24, and H28). A significantly high percentage of hydrophobicity in n-hexane was observed with L. plantarum H47 (71.99±1.39) followed by L. plantarum H28 (65.68±1.49) while the highest value in the presence of chloroform, belonging L. plantarum H24 and L. plantarum H28 (28.39±0.88 and 23.58±0.68 respectively). Both the Intact Cells (ICs) and Cell-Free Supernatants (CFSs) of L. plantarum H24 strain displayed the higher percentage (p 0.05) of DPPH radical scavenging activity (76.58±0.55% and 59.13±4.01% respectively). With the HRS activity, ICs of L. plantarum H24 strain exhibited the highest (p > 0.05) activity (73.37±0.62%) whereas, the CFS of L. plantarum H47 was the best (29.49±1.28%, p > 0.05). In all-purpose, based on PCA, L. plantarum H28, and L. plantarum H24 seem to be quite promising as they possessed the best properties tested. Accordingly, they can be chosen as representative of the potential probiotic strains.

honeybee lactic acid bacteria safety hydrophobicity antioxidant

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Guo, X.H., Kim, J.M., Nam, H.M., Park, S.Y., and Kim, J.M., “Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties”, Anaerobe, 16: 321-326, 2010.
[2]  Dhanasekaran, D., Saha, S., Thajuddin, N., and Panneerselvam, A., “Probiotic effect of Lactobacillus isolates against bacterial pathogens in Claris orientalis”, Facta Universitatis Series: Medicine and Biology, 15 (3): 97-102, 2008.
[3]  Sieladie, D.V., Zambou, N.F., Kaktcham, P.M., Cresci, A., and Fonteh, F., “Probiotic properties of lactobacilli strains isolated from raw cow milk in the western highlands of Cameroon”, Innov Rom. Food Biotechnol., 9:12-28, 2011.
[4]  Whitehead, K., Versalovic, J., Roos, S., and Britton, R.A., “Genomic and Genetic Characterization of the Bile Stress Response of Probiotic Lactobacillus reuteri ATCC 55730”, Appl. Environ. Microbiol., 74 (6): 1812-1819, 2008.
[5]  Kuzawa, C.W., and Sweet, E., “Epigenetics and the embodiment of race: developmental origins of US racial disparities in cardiovascular health”, Am. J. Hum. Biol., 21:2-15, 2009.
[6]  Ahn, Y.T., Kim, G.B., Lim, K.S., Baek, Y.J., and Kim, H.U., “Deconjugation of bile salts by Lactobacillus acidophilus isolates”, Int. Dairy J., 13: 303-311, 2003.
[7]  Sudha, M.R., Chauhan, P., Dixit, K., Babu, S., and Jamil, K., “Probiotics as complementary therapy for hypercholesterolemia”, Biol. Med., 1 (4):1-13, 2009.
[8]  Kumar, R., Grover, S., and Batish, K.V., “Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolase-producing Lactobacillus plantarum strains in Sprague-Dawley rats”, Br. J. Nutr., 105: 561-573, 2011.
[9]  World Health Organization (WHO). Cardiovascular Disease fact sheet: 2013. [online] Available: [Accessed Nov. 19, 2015].
[10]  Pereira, D.I., and Gibson, G.R., “Effects of consumption of probiotics and prebiotics on serum lipid levels in humans”, Crit. Rev. Biochem. Mol. Biol., 37: 259-281, 2002.
[11]  Westhuyzen, J., “The oxidation hypothesis of atherosclerosis: An update”, Ann. Clin. Lab. Sci., 27:1-10, 1997.
[12]  Halliwell, B., and Gutteridge, J., “Free radicals in biology and medicine.” Oxford Clarendon Press, 23-30, 1985.
[13]  Kullisaar, T., Zilmer, M., Mikelsaar, M., Vihalemm, T., Annuk, H., Kairaneand C., Kilk, A., “Two antioxidative lactobacilli strains as promising probiotics”, Int. Food Microbiol., 72:215-224, 2002.
[14]  Annuk, H., Shchepetova, J., Kullisaar, T., Songisepp, E., Zilmer, M., and Mikelsaar, M., “Characterization of intestinal lactobacilli as putative probiotic candidates”, J. Appl. Microbiol., 94: 403-412, 2003.
[15]  Shigwedha, N., and Jia, L., “Bifidobacterium in Human GI Tract: Screening. Isolation. Survival and Growth Kinetics in Simulated Gastrointestinal Conditions”. In Kongo J. M. (Eds.) Lactic acid bacteria- R & D for food health and livestock purposes. InTech press. JanezaTrdine 9. 51000 Rijeka. Croatia. 2013, 281-308.
[16]  Lavilla-Lerma, L., Pérez-Pulido, R., Martínez-Bueno, M., Maqueda, M., and Valdivia, E., “Characterization of functional, safety and gut survival related characteristics of Lactobacillus strains isolated from farm house goat's milk cheeses”, Int. J. FoodMicrobiol., 163: 136-145, 2013.
[17]  Etzold, S., Kober, O.I., MacKenzie, D.A., Tailford, L.E., Gunning, P., Walshaw, J., Hemmings, A.M., and Juge, N., “Structural basis for adaptation of lactobacilli to gastrointestinal mucus”, Environ. Microbiol., 16:888-903, 2014
[18]  De Man, J.C., Rogosa, M., and Sharpe, M.E., “A medium for the cultivation of lactobacilli”, J. Appl. Bacteriol., 23: 130-135, 1960
[19]  Harrigan, W.F., and McCance, M.E., Laboratory Methods in Food and Dairy Microbiology. Academic Press. London. 1990, 8thedition.
[20]  Gerhardt, P., Murray, R.G.E., Costilow, R.N., Nester, E.W., Wood, W.A., Krieg, N.R., and Phillips, G.B., Manual of methods for general bacteriology. American Society for Microbiology. NW Washington, DC 20006, 1981.
[21]  European Food Safety Authority (EFSA) Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal, 2012, 10.
[22]  Ji, K., Jang, Y.N., and Kim, T.Y., “Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces”, J. Microbiol. Biotechnol., 25 (9):1568-1577, 2015
[23]  Solieri, L., Bianchi, A., Mottolese, G., Lemmetti, F., and Giudici, P., “Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened Parmigiano Reggiano cheese by in vitro screening and principal component analysis”, Food Microbiol., 38:240-249, 2014.
[24]  Zhang, S., Liu, L., Su, Y., Li, H., Sun, Q., Liang, X., and Lv, J., ‘‘Antioxidative activity of lactic acid bacteria in yogurt’’, Afr. J. Microbiol. Res., 5 (29): 5194-5201. 2011.
[25]  Xing, J., Wang, G., Zhang, Q., Liu, X., Gu, Z., Zhang, H., Chen, Y.Q., and Chen, W., “Determining Antioxidant Activities of Lactobacilli Cell-Free Supernatants by Cellular Antioxidant Assay: A Comparison with Traditional Methods”, PLoS ONE 10: e0119058, 2015.
[26]  Charteris, W.P, Kelly, P.M., Morelli, L., and Collins, J.K, “Antibiotic susceptibility of potentially probiotic Lactobacillus species”, J. Food Prot., 61:1636-1643. 1998
[27]  Thakkar, P., Modi, H.A., and Prajapati, J.B. “Isolation, characterization and safety assessment of lactic acid bacterial isolates from fermented food products”, Int. J. Curr. Microbiol. App. Sci., 4 (4): 713-725, 2015.
[28]  De Vuyst, L., Foulquie, M.R., and Revets, H., “The role and application of enterococci in food and health”, Int. J. Food Microbiol., 84:299-318, 2003.
[29]  Anas, M., Ahmed, K., and Mebrouk, K., “Study of the antimicrobial and probiotic effect of Lactobacillus plantarum (P6) isolated from Raw Goat’s Milk from the region of Western Algeria”, World Appl. Sci. J., 32 (7): 1304-1310. 2014.
[30]  Cauwerts, C.K., Asmans, P.F., Evriese, D.L.A., Aesebrouck, H.F., and. Ecostere, D.A., “Cloacal Lactobacillus isolates from broilers often display resistance toward tetracycline antibiotics”, Microb. Drug Resist., 12:284-288, 2006.
[31]  Ashraf, R., and. Shah, N.P., “Antibiotic resistance of probiotic organisms and safety of probiotic dairy products”, Int. Food Res. J., 18 (3):837-853, 2011.
[32]  Danielsen, M., and. Wind, A.A., “Susceptibility of Lactobacillus ssp. to antimicrobial agents”, Int. J. Food Microbiol., 82:1-11, 2003.
[33]  Charteris, W.P., Kelly, P.M., Morelli, L., and Collins, J.K., “Gradient diffusion antibiotic susceptibility testing of potentially probiotic lactobacilli”, J. Food Prot., 64: 2007-2014, 2001.
[34]  Kaktcham, P.M., Zambou, N.F., Tchouanguep, F.M., El-Soda, M., and Choudhary, M.I., “Antimicrobial and Safety Properties of Lactobacilli Isolated from two Cameroonian Traditional Fermented Foods”, Sci. Pharm., 80:189-203, 2012.
[35]  Von Ossowski, I., Reunanen, J., Satokari, R., Vesterlund, S., Kankainen, M., Huhtinen, H., Tynkkynen, S., Salminen, S., de Vos, V.M., and Palva, A., “Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits”, Appl. Environ. Microbiol., 76:2049-2057, 2010.
[36]  Raghavan, K.T., Jacob, A.A., and Chandran, H., “Honey bee Gut flora as a Source of LAB (Lactic Acid Bacteria) with Probiotic Capabilities”, J. Food Technol., 105:126-134, 2013.
[37]  Zavaglia, A., Kociubinski, G., Pérez, P., and De Antoni., A.G.G., “Isolation and characterization of Bifidobacterium strains for probiotic formulation”, J. Food Prot., 61:865-873, 1998.
[38]  Tuo, Y., Hanli, Y., Ai, L., Wu, Z., Guo, B., and Chen, W.,” Aggregation and adhesion properties of 22 Lactobacillus strains”, J. Dairy. Sci., 96:4252-4257. 2013.
[39]  Lee, K.K., and Yii, K.C., “A comparison of three methods for assaying hydrophobicity of pathogenic vibrios”, Lett. Appl. Microbiol., 23: 343-346, 1996.
[40]  Kaktcham, P.M., Temgoua, J-B., Zambou, N.F., Diaz-Ruiz, G., Wacher, C., and Pérez-Chabela, M.L., “In Vitro Evaluation of the Probiotic and Safety Properties of Bacteriocinogenic and Non-Bacteriocinogenic Lactic Acid Bacteria from the Intestines of Nile Tilapia and Common Carp for Their Use as Probiotics in Aquaculture”, Probiotics Antimicro. Prot., 2017.
[41]  Ramos, C.L., Thorsen, L., Schwan, R.F., Jespersen, L., “Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products”, Food Microbiol., 36: 22-29, 2013.
[42]  Wadstroum, T., Andersson, K., Sydow, M., Axelsson, L., Lindgren, S., and Gullmar, B., “Surface properties of lactobacilli isolated from the small intestine of pigs”, J. Appl. Microbiol., 62: 513-520, 1987
[43]  Xu, H., Jeong, H.S., Lee, H.Y, and Ahn, J., “Assessment of cell surface properties and adhesion potential of selected probiotic strains”, Lett. Appl. Microbiol., 49:434-442, 2009.
[44]  Goh, Y.J., and Klaenhammer, T.R., “Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM”. Appl. Environ. Microbiol., 76:5005-5012, 2010.
[45]  Lin, M.Y., and Yen, C.L., “Antioxidative ability of lactic acid bacteria”, J. Agric. Food. Chem., 47:1460-1466, 1999.
[46]  Songisepp, E., Kals, J., Kullisaar, T., Mändar, R., Hütt, P., Zilmer, M., and Mikelsaar, M., “Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers”, Nutr J., 4:22, 2005.
[47]  Foligné, B., Dewulf, J., Breton, J., Claisse, O., Lonvaud-Funel, A., and Pot, B., “Probiotic properties of non-conventional lactic acid bacteria: Immunomodulation by Oenococcusoeni”, Int. J. Food Microbiol., 140:136-145, 2010.
[48]  Kao, T., and Chen, B., “Functional components in soybean cake and their effects on antioxidant activity”, J. Agricult. Food Chem., 54:7544-7555, 2006.
[49]  Liu, C., and Pan, T., “In Vitro Effects of Lactic Acid Bacteria on Cancer Cell Viability and Antioxidant Activity”, J. Food Drug Anal., 18:77- 86, 2010.
[50]  Li, S., Zhao, Y., Zhang, L., Zhang, X., Huang, L., Li, D., Niu, C., Yang, Z, and Wang, Q., “Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods”, Food Chem., 135:1914-1919, 2012.
[51]  Kaur, M., Singh, H., Jangra, M., Kaur, L., Jaswal, P., Dureja, C., Nandanwar, H., Chaudhuri S.R., Raje, M., Mishra, S., and Pinnaka, A.K,. “Lactic acid bacteria isolated from yak milk show probiotic potential”, Appl. Microbiol. Biotechnol., 10:7635-7652, 2017
[52]  Shen, Q., Shang, N., and Li, P., “In vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 isolated from centenarians”, Curr. Microbiol., 62: 1097-1103, 2011.
[53]  Yi, Z., Fu, Y., Li, M., Gao, K., and Zhang, X., “Effect of LTA isolated from bifidobacteria on D -galactose-induced aging”, Exp. Geron., 44: 760-765. 2009.
[54]  Xu, R., Q. Shen, X. Ding, W. Gao, and P. Li., “Chemical characterization and antioxidant activity of an exopolysaccharide fraction isolated from Bifidobacterium animalis RH”, Eur. Food Res. Technol., 232: 231-240, 2011.
[55]  Pan, D., and Mei, X., “Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. Lactis 12”. Carbohydr. Polymers, 80: 908-914, 2010.