American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: https://www.sciepub.com/journal/ajmr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Microbiological Research. 2015, 3(2), 55-58
DOI: 10.12691/ajmr-3-2-2
Open AccessArticle

Isolation and Molecular Characterization of Cellulolytic Bacillus Isolates from Soil and Compost

Elhadi A. I. Elkhalil1, , Fatima Y. Gaffar1, Marmar A. El Siddig2 and Huda A. H. Osman1

1Department of Botany and Agric. Biotechnology, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Sudan

2Department of Botany, Faculty of Science, University of Khartoum, Sudan

Pub. Date: March 06, 2015

Cite this paper:
Elhadi A. I. Elkhalil, Fatima Y. Gaffar, Marmar A. El Siddig and Huda A. H. Osman. Isolation and Molecular Characterization of Cellulolytic Bacillus Isolates from Soil and Compost. American Journal of Microbiological Research. 2015; 3(2):55-58. doi: 10.12691/ajmr-3-2-2

Abstract

Fifty five Bacillus isolates were isolated from compost, and alkaline silty clay soil (rhizosphere of potato plant) in Shambat, Khartoum North, Sudan, and screened using morphological tests, biochemical and molecular characterization using 16s rDNA analysis., Screening of cellulase producing isolates was done using carboxyl methyl cellulose (CMC) as a substrate at 25°C. Twenty six isolates were found to be cellulase producers. Among the isolates, four isolates, 9+, 23, 20 and 13 showed high potential in producing extracellular cellulase and had an average cellulase activity of 2.89, 3.12, 3.48 and 3.53 Unit/ml, respectively. Genetic distance between the four isolates with high cellulase activity was determined with RAPD analysis based on OPC-3 primer.

Keywords:
bacillus cellulase biochemical identification 16s rDNA

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Dio R.H. (2008). Cellulases of mesophilic microorganisms: Cellulosome and no cellulosome producers. Ann NY A cad Sci. (1125): 167-279.
 
[2]  Rastogi G.; MappidiG.l.; Gurram R.N.; Adhikari A. Bischoff K. M.; Hughes S.R.; Apel W.A.; Bangss Dixon D.J. and Sani, R.K. (2009). Isolation and characterization of cellulose degrading bacteria from the deep subsurface of the Homestako gold mine, lead, southe Dakota, VSA. J Ind Microbiol Biotechol 36 (4): 585-598.
 
[3]  Meddeb-Mouelhi, F.; Moisan, J.K. and Beauregard, M. (2014). A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzyme and Microbial Technology, 66: 16-19.
 
[4]  Percival Zhang, Y. H.; Himmel, M. E. and Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24: 452-481.
 
[5]  Kasana R.C.; DharH.; Dutt S. andGulati A. (2008) Arapid and easy method for the detection of microbial cellulases on agar plates using grams iodine. CurrMicrobiol 57 (5): 503-507.
 
[6]  Kim; Woon T.; Kim Y.; Kim S.; Lee J.; Dark C. and Kim H. (2010) Identification and Distribution of Bacillus species in Doenjang by Whole-cell Protein Patterns and 16s r RNA Gene sequence Analysis. J. Microbiol. Biotechnol, 20 (8): 1210-1214.
 
[7]  Qingming Y.; Zongping X. and Tiansheng T. (1997). Rapid Classification of Bacillus Isolate Using RAPD Technique. Wuhan University. Journal of Natural Sciences 2: 1, 105-109.
 
[8]  Woese C.R.; E. Stackebbrandt; T. J. Macke and G. E. fox (1985) Aphylogenetic definition of the major eubacterial taxa syst. Appl. Microbiol. 6: 143-151.
 
[9]  Barney M.; Volgyi A.; Novarro A. and Ruder D. (2001) Riboprinting and 16s r RNA Gene sequencing for Identification of Brewery Pediococcus Isolate. Appl Environ Microbiol 67 (2): 553-560.
 
[10]  Lindquist J. (2006) Bacillus isolation. Bact. 102 Website-Fall.
 
[11]  Harrigan W.F. and McCance M.E (1976) Laboratory Methods in Microbiology, Academic press, London and New York.
 
[12]  Kasing A. (1995). Cellulase production, Practical biotechnology, Practical Biotechnology, Sarawak, Malaysia.
 
[13]  Kotchoni S.O. and Shonukan O.O. (2002) Regulatory mutations affecting the synthesis of cellulase in Bacillus pumilus. World journal of Microbiology and Biotechnology 18: 487-491.
 
[14]  Miller G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31 (3): 426-428.
 
[15]  Soumet C.; Ermel, G.; Fach, P. and Colin, P. (1994).Evaluation of different DNA extraction procedures for the detection of Salmonella from chicken products by polymerase chain reaction. Lett. Appl. Microbiol., 19, 294-298.
 
[16]  Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing polyogenetic trees. Molecular Biology Evolution. 4 (4): 406-425.
 
[17]  SneathP.H. and Mair N.S. (1986). Bergy’s Manual of systemic bacteriology, ninth edition. Vol. 2, Wiliams and Wilkins Baltimore, U.S.A.
 
[18]  Drancourt M.; Bollet C.; Calioz A.; Martelin R.; Gayral J. and Raoutt D. (2000). 16s Ribosomal DNA sequence Analysis of a large collection of Environmental and clinical Un identifiable Bacterial isolates. J clin Microbiol 38 (10): 3623-3630.