American Journal of Medical and Biological Research
ISSN (Print): 2328-4080 ISSN (Online): 2328-4099 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Medical and Biological Research. 2015, 3(1), 1-32
DOI: 10.12691/ajmbr-3-1-1
Open AccessArticle

The Immunomodulatory, Antimicrobial and Bactericidal Efficacy of Commonly Used Commercial Household Disinfectants, Sterilizers and Antiseptics in Vitro: Laboratory Assessment of Anti-Inflammatory Infection Control Mechanisms and Comparative Biochemical Analysis of the Microbial Growth of Gram-Negative Bacteria

Niveen M. Masri1, Lama B. Hanbali1 and John J. Haddad1,

1Cellular and Molecular Physiology and Immunology Signaling Research Group, Biomedical Laboratory and Clinical Sciences Division, Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon

Pub. Date: January 29, 2015

Cite this paper:
Niveen M. Masri, Lama B. Hanbali and John J. Haddad. The Immunomodulatory, Antimicrobial and Bactericidal Efficacy of Commonly Used Commercial Household Disinfectants, Sterilizers and Antiseptics in Vitro: Laboratory Assessment of Anti-Inflammatory Infection Control Mechanisms and Comparative Biochemical Analysis of the Microbial Growth of Gram-Negative Bacteria. American Journal of Medical and Biological Research. 2015; 3(1):1-32. doi: 10.12691/ajmbr-3-1-1


Background: Immunomodulatory/anti-inflammatory and microbial infection control strategies characterize the spiral evolution of public awareness of health safety issues. This is substantiated with burgeoning number of cases of microbial contamination and/or infection in myriad healthcare settings, at the hospital, and even at home. Previously, we have investigated and identified laboratory parameters in the assessment of the antimicrobial effects of a myriad of commercial disinfectants on the growth of pathogenic and saprophytic gram-positive bacteria. The present sequel study investigates the antimicrobial/bactericidal effects of commercially available disinfectants, sterilizers, antiseptics, and chlorhexidine-containing detergents on the growth of saprophytic and pathogenic gram-negative bacteria in vitro. It is an unprecedented wide canopy enveloping standardized comparative assessments of the antimicrobial efficiency of consumer-targeted household detergents, curbing and containing microbial infection, inflammation and contamination propensity. Methods: Given the medical significance and impact of public infection control, we have meticulously examined at least 22 different detergents categorized into four classes (each category comprises a variety of commercially available products commonly used by the public): i) Class A – Daily Mouthwash; ii) Class B – Toilet Bowl Cleaners/Bleaches/Sanitizers; iii) Class C – Surface and Floor Mopping Cleaners/Detergents; and iv) Class D – Hand and Body Wash Gels. Whilst the canonical menu of active ingredients varies among those aforementioned classes, antimicrobial components are well established. Results: Regarding Class A, the most effective against Citrobacter koseri is ‘Colgate Plax Mouthwash’; Enterobacter cloacae is ‘Colgate Plax Mouthwash’; Escherichia coli is ‘Colgate Plax Mouthwash’; Escherichia coli ESBL is ‘Colgate Plax Mouthwash’; Klebsiella pneumoniae is ‘Colgate Plax Mouthwash’; Proteus vulgaris is ‘Colgate Plax Mouthwash’; Pseudomonas aeruginosa is ‘Perio.Kin Chlorhexidina 0.20 %’; Salmonella typhimurium is ‘Colgate Plax Mouthwash’; and Shigella sonnei is ‘Colgate Plax Mouthwash’. Regarding Class B, the most effective against C. koseri is ‘Harpic Power Plus Disinfectant’; E. cloacae is ‘WC Net Bleach Gel’; E. coli is ‘WC Net Bleach Gel’; E. coli ESBL is ‘WC Net Bleach Gel’; K. pneumoniae are ‘WC Net Bleach Gel’ and ‘Harpic Power Plus Disinfectant’; P. vulgaris is ‘Spartan Max WC Lavender’; P. aeruginosa is ‘WC Net Bleach Gel’; S. typhimurium is ‘Clorox Bleach Rain Clean’; and S. sonnei is ‘Harpic Power Plus Disinfectant’. Regarding Class C, the most effective against C. koseri is ‘Dettol Antiseptic/Disinfectant’; E. cloacae is ‘Dettol Antiseptic/Disinfectant’; E. coli is ‘Vim Cream Multipurpose Fast Rinsing’; E. coli ESBL is ‘Dettol Antiseptic/Disinfectant’; K. pneumoniae is ‘Dettol Antiseptic/Disinfectant’; P. vulgaris is ‘Dettol Antiseptic/Disinfectant’; P. aeruginosa is ‘Dettol Antiseptic/Disinfectant’; S. typhimurium is ‘Dettol Antiseptic/Disinfectant’; and S. sonnei is ‘Dettol Antiseptic/Disinfectant’. Regarding Class D, the most effective against C. koseri, E. cloacae, E. coli, E. coli ESBL, K. pneumoniae, P. vulgaris, P. aeruginosa, S. typhimurium, and S. sonnei is unprecedentedly the ‘HiGeen Hand and Body Wash Gel’.

antimicrobial anti-inflammation antiseptics bactericidal biomedical laboratory bleaches ceftazidime contamination disinfectants disk diffusion gram-negative bacteria household detergents immunomodulation infection control sterilizers

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Masri, M.N.; Hanbali, L.B.; Kamar, A.H.; Kanafani, L.M.S.; Hanbali, M.B.; Haddad, J.J. The immunomodulatory, antimicrobial and bactericidal efficacy of commonly used commercial household disinfectants, sterilizers and antiseptics in vitro: Putative anti-inflammatory infection control mechanisms and comparative biochemical analysis of the microbial growth of gram-positive bacteria. Am. J. Med. Biol. Res., 2013, 1, 103-133.
[2]  Bloomfield, S.F. The use of disinfectants in the home. J. Appl. Bacteriol., 1978, 45, 1-38.
[3]  Tirali, R.E.; Bodur, H.; Sipahi, B.; Sungurtekin, E. Evaluation of the antimicrobial activities of chlorhexidine gluconate, sodium hypochlorite and octenidine hydrochloride in vitro. Aust. Endod. J., 2013, 39, 15-18.
[4]  Gomes, B.P.; Ferraz, C.C.; Vianna, M.E.; Berber, V.B.; Teixeira, F.B.; Souza-Filho, F.J. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. Int. Endod. J., 2001, 34, 424-428.
[5]  Lankford, M.G.; Collins, S.; Youngberg, L.; Rooney, D.M.; Warren, J.R.; Noskin, G.A. Assessment of materials commonly utilized in health care: Implications for bacterial survival and transmission. Am. J. Infect. Control, 2006, 34, 258-263.
[6]  Burke, J.P. Infection control a problem for patient safety. N. Engl. J. Med., 2003, 348, 651-656.
[7]  Noskin, G.A.; Stosor, V.; Cooper, I.; Peterson, L.R. Recovery of vancomycin-resistant Enterococci on fingertips and environmental surfaces. Infect. Control Hosp. Epidemiol., 1995, 16, 577-581.
[8]  Sehulster, L.; Chinn, R.Y.W. Guidelines for environmental infection control in health-care facilities. Recommendations of CDC and the healthcare infection control practices advisory committee (HICPAC). MMWR Morb. Mortal. Wkly. Rep., 2003, 52, 1-42.
[9]  Scott, E.; Bloomfield, S.F. The survival and transfer of microbial contamination via cloths, hands, and utensils. J. Appl. Bacteriol., 1990, 68, 271-278.
[10]  Neely, A.N.; Maley, M.P. Survival of Enterococci and Staphylococci on hospital fabrics and plastics. J. Clin. Microbiol., 2000, 38, 724-726.
[11]  Widmer, A.F.; Wenzel, R.P.; Trilla, A.; Bale, M.J.; Jones, R.N.; Doebbling, B.N. Outbreak of Pseudomonas aeruginosa infections in a surgical intensive care unit: Probable transmission via hands of healthcare worker. Clin. Infect. Dis., 1993, 16, 372-376.
[12]  Saurina, G.; Landman, D.; Quale, J.M. Activity of disinfectants against vancomycin-resistant Enterococcus faecium. Infect. Control Hosp. Epidemiol., 1997, 18, 345-347.
[13]  Rutala,W.A.; Barbee, S.L.; Aguiar, N.C.; Sobsey, M.D.; Weber, D.J. Antimicrobial activity of home disinfectants and natural products against potential human pathogens. Infect. Control Hosp. Epidemiol., 2000, 21, 33-38.
[14]  Dharan, S.; Mourouga, P.; Copin, P.; Bessmer, G.; Tschanz, B.; Pittet, D. Routine disinfection of patients’ environmental surfaces. Myth or reality? J. Hosp. Infect., 1999, 42, 113-117.
[15]  Exner, M.; Vacata, V.; Hornei, B.; Dietlein, E.; Gebel, J. Household cleaning and surface disinfection: New insights and strategies. J. Hosp. Infect., 2004, 56, S70-S75.
[16]  Rutala, W.A. APIC guideline for selection and use of disinfectants. Am. J. Infect. Control, 1996, 24, 313-342.
[17]  Lim, W.M.; Ting, D.H. Healthcare marketing: Contemporary salient issues and future research directions. Int. J. Healthcare Manag., 2012, 5, 3-11.
[18]  Entoyen, A.; Tollen, L. Competition in healthcare: It takes systems to pursue quality and efficiency. Health Aff., 2005, 24, 420-433.
[19]  Patters, M.R.; Nalbandian, J.; Nichols, F.C. Effects of octenidine mouthrinse on plaque formation and gingivitis in humans. J. Periodontal. Res., 1986, 21, 154-162.
[20]  Mir, J.; Morato, J.; Ribas, F. Resistance to chlorine of freshwater bacterial strains. J. Appl. Microbiol., 1997, 82, 7-18.
[21]  Earnshaw, A.M.; Lawrence, L.M. Sensitivity to commercial disinfectants, and the occurrence of plasmids within various Listeria monocytogenes genotypes isolated from poultry products and the poultry processing environment. J. Appl. Microbiol., 1998, 84, 642-648.
[22]  Taylor, J.H.; Rogers, S.J.; Holah, J.T. A comparison of the bactericidal efficacy of 18 disinfectants used in the food industry against Escherichia coli O157:H7 and Pseudomonas aeruginosa at 10 and 20°C. J. Appl. Microbiol., 1999, 87, 718-725.
[23]  Langsrud, S.; Møretrø, T.; Sundheim, G. Characterization of Serratia marcescens surviving in disinfecting footbaths. J. Appl. Microbiol., 2003, 95, 186-195.
[24]  Halfhide, D.E.; Gannon, B.W.; Hayes, C.M.; Roe, J.M. Wide variation in effectiveness of laboratory disinfectants against bacteriophages. Lett. Appl. Microbiol., 2008, 47, 608-612.
[25]  Møretrø1, T.; Vestby, L.K.; Nesse, L.L.; Storheim, S.E.; Kotlarz, K.; Langsrud, S. Evaluation of efficacy of disinfectants against Salmonella from the feed industry. J. Appl. Microbiol., 2009, 106, 1005-1012.
[26]  Pereira, R.P.; Lucas, M.G.; Spolidorio, D.M.P.; Filho, J.N.A. Antimicrobial activity of disinfectant agents incorporated into type IV dental stone. Gerodontol., 2012, 29, e267-e274.
[27]  Banwo1, K.; Sanni, A.; Tan, H. Technological properties and probiotic potential of Enterococcus faecium strains isolated from cow milk. J. Appl. Microbiol., 1997, 114, 229-241.
[28]  Langsrud, S.; Sundheim, G. Factors influencing a suspension test method for antimicrobial activity of disinfectants. J. Appl. Microbiol., 1998, 85, 1006-1012.
[29]  Walton, J.T.; Hill, D.J.; Protheroe, R.G.; Nevill, A.; Gibson, H. Investigation into the effect of detergents on disinfectant susceptibility of attached Escherichia coli and Listeria monocytogenes. J. Appl. Microbiol., 2008, 105, 309-315.
[30]  Kastbjerg, V.G.; Gram, L. Model systems allowing quantification of sensitivity to disinfectants and comparison of disinfectant susceptibility of persistent and presumed non-persistent Listeria monocytogenes. J. Appl. Microbiol., 2009, 106, 1667-1681.
[31]  Eick, S.; Goltz, S.; Nietzsche, S.; Jentsch, H.; Pfister, W. Efficacy of chlorhexidine digluconate-containing formulations and other mouthrinses against periodontopathogenic microorganisms. Quintessence Int., 2011, 42, 687-700.
[32]  Lin, S.; Levin, L.; Weiss, E.I.; Peled, M.; Fuss, Z. In vitro antibacterial efficacy of a new chlorhexidine slow-release device. Quintessence Int., 2006, 37, 391-394.
[33]  Sampath, L.A.; Tambe, S.M.; Modak, S.M. In vitro and in vivo efficacy of catheters impregnated with antiseptics or antibiotics: Evaluation of the risk of bacterial resistance to the antimicrobials in the catheters. Infect. Control Hosp. Epidemiol., 2001, 22, 640-646.
[34]  McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev., 1999, 12, 147-179.
[35]  Nicoletti, G.; Boghossianm V.; Gurevitchm F.; Borlandm R.; Morgenrothm P. The antimicrobial activity in vitro of chlorhexidine, a mixture of isothiazolinones (‘Kathon’ CG) and cetyl trimethyl ammonium bromide (CTAB). J. Hosp. Infect., 1993, 23, 87-111.
[36]  Russell, A.D. Chlorhexidine: Antibacterial action and bacterial resistance. Infection, 1986, 14, 212-215.
[37]  Rugpolmuang, L.; Thanabodeethada, R.; Riansuwan, K. Comparison of the effectiveness in bacterial decontamination between chlorhexidine gluconate and povidone-iodine solution in foot and ankle: A pilot study. J. Med. Assoc. Thai., 2012, 95, S95-S98.
[38]  Mohammadi, Z.; Shalavi, S.; Giardino, L.; Palazzi, F.; Mashouf, R.Y.; Soltanian, A. Antimicrobial effect of three new and two established root canal irrigation solutions. Gen. Dent., 2012, 60, 534-537.
[39]  Pradeep, A.R.; Kumari, M.; Priyanka, N.; Naik, S.B. Efficacy of chlorhexidine, metronidazole and combination gel in the treatment of gingivitis – A randomized clinical trial. J. Int. Acad. Periodontol., 2012, 14, 91-96.
[40]  Abuzaid, A.; Hamouda, A.; Amyes, S.G. Bactericidal activity of five antiseptics on Klebsiella pneumoniae and its relationship to the presence of efflux pump genes and influence of organic matter. J. Chemother., 2012, 24, 297-299.
[41]  Bidar, M.; Hooshiar, S.; Naderinasab, M.; Moazzami, M.; Orafaee, H.; Naghavi, N.; Jafarzadeh, H. Comparative study of the antimicrobial effect of three irrigant solutions (chlorhexidine, sodium hypochlorite and chlorhexidinated MUMS). J. Contemp. Dent. Pract., 2012, 13, 436-439.
[42]  Da Silva, N.B.; Alexandria, A.K.; De Lima, A.L.; Claudino, L.V.; De Oliveira Carneiro, T.F.; Da Costa, A.C.; Valença, A.M.; Cavalcanti, A.L. In vitro antimicrobial activity of mouth washes and herbal products against dental biofilm-forming bacteria. Contemp. Clin. Dent., 2012, 3, 302-305.
[43]  Neely, A.L. Essential oil mouthwash (EOMW) may be equivalent to chlorhexidine (CHX) for long-term control of gingival inflammation but CHX appears to perform better than EOMW in plaque control. J. Evid. Based Dent. Pract., 2012, 12, S69-S72.
[44]  Wikén Albertsson, K.; Persson, A.; van Dijken, J.W. Effect of essential oils containing and alcohol-free chlorhexidine mouthrinses on cariogenic micro-organisms in human saliva. Acta Odontol. Scand., 2013, 71, 883-891.
[45]  Konidala, U.; Nuvvula, S.; Mohapatra, A.; Nirmala, S.V. Efficacy of various disinfectants on microbially contaminated toothbrushes due to brushing. Contemp. Clin. Dent., 2011, 2, 302-307.
[46]  Zheng, C.Y.; Wang, Z.H. Effects of chlorhexidine, listerine and fluoride listerine mouthrinses on four putative root-caries pathogens in the biofilm. Chin. J. Dent. Res., 2011, 14, 135-140.
[47]  Charles, C.A.; McGuire, J.A.; Sharma, N.C.; Qaqish, J. Comparative efficacy of two daily use mouthrinses: Randomized clinical trial using an experimental gingivitis model. Braz. Oral Res., 2011, 25, 338-344.
[48]  Agarwal, P.; Nagesh, L. Comparative evaluation of efficacy of 0.2% Chlorhexidine, Listerine and Tulsi extract mouth rinses on salivary Streptococcus mutans count of high school children – RCT. Contemp. Clin. Trials, 2011, 32, 802-808.
[49]  Ramage, G.; Jose, A.; Coco, B.; Rajendran, R.; Rautemaa, R.; Murray, C.; Lappin, D.F.; Bagg, J. Commercial mouthwashes are more effective than azole antifungals against Candida albicans biofilms in vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2011, 111, 456-460.
[50]  Saad, S.; Greenman, J.; Shaw, H. Comparative effects of various commercially available mouthrinse formulations on oral malodor. Oral Dis., 2011, 17, 180-186.
[51]  Fine, D.H. Listerine: Past, present and future – A test of thyme. J. Dent., 2010, 38, S2-S5.
[52]  Fine, D.H.; Furgang, D.; McKiernan, M.; Tereski-Bischio, D.; Ricci-Nittel, D.; Zhang, P.; Araujo, M.W. An investigation of the effect of an essential oil mouthrinse on induced bacteraemia: A pilot study. J. Clin. Periodontol., 2010, 37, 840-847.
[53]  Beneduce, C.; Baxter, K.A.; Bowman, J.; Haines, M.; Andreana, S. Germicidal activity of antimicrobials and VIOlight personal travel toothbrush sanitizer: An in vitro study. J. Dent., 2010, 38, 621-625.
[54]  Haffajee, A.D.; Yaskell, T.; Socransky, S.S. Antimicrobial effectiveness of an herbal mouthrinse compared with an essential oil and a chlorhexidine mouthrinse. J. Am. Dent. Assoc., 2008, 139, 606-611.
[55]  Edmonds, S.L.; McCormack, R.R.; Zhou, S.S.; Macinga, D.R.; Fricker, C.M. Hand hygiene regimens for the reduction of risk in food service environments. J. Food Prot., 2012, 75, 1303-1309.
[56]  Wang, Z.; Shen, Y.; Ma, J.; Haapasalo, M. The effect of detergents on the antibacterial activity of disinfecting solutions in dentin. J. Endod., 2012, 38, 948-953.
[57]  Almas, K.; Skaug, N.; Ahmad, I. An in vitro antimicrobial comparison of miswak extract with commercially available non-alcohol mouthrinses. Int. J. Dent. Hyg., 2005, 3, 18-24.
[58]  Otten, M.P.; Busscher, H.J.; van der Mei, H.C.; van Hoogmoed, C.G.; Abbas, F. Acute and substantive action of antimicrobial toothpastes and mouthrinses on oral biofilm in vitro. Eur. J. Oral Sci., 2011, 119, 151-155.
[59]  Lucas, V.S.; Gafan, G.; Dewhurst, S.; Roberts, G.J. Prevalence, intensity and nature of bacteraemia after toothbrushing. J. Dent., 2008, 36, 481-487.
[60]  Sreenivasan, P.K.; Haraszthy, V.I.; Zambon, J.J. Antimicrobial efficacy of 0.05% cetylpyridinium chloride mouthrinses. Lett. Appl. Microbiol., 2013, 56, 14-20.
[61]  Thomas, E. Efficacy of two commonly available mouth rinses used as preprocedural rinses in children. J. Indian Soc. Pedod. Prev. Dent., 2011, 29, 113-116.
[62]  Sullivan, R.; Santarpia, P.; Lavender, S.; Gittins, E.; Liu, Z.; Anderson, M.H.; He, J.; Shi, W.; Eckert, R. Clinical efficacy of a specifically targeted antimicrobial peptide mouth rinse: Targeted elimination of Streptococcus mutans and prevention of demineralization. Caries Res., 2011, 45, 415-428.
[63]  Haraszthy, V.I.; Zambon, J.J.; Sreenivasan P.K. Evaluation of the antimicrobial activity of dentifrices on human oral bacteria. J. Clin. Dent., 2010, 21, 96-100.
[64]  Schaeffer, L.M.; Szewczyk, G.; Nesta, J.; Vandeven, M.; Du-Thumm, L.; Williams, M.I.; Arvanitidou, E. In vitro antibacterial efficacy of cetylpyridinium chloride-containing mouthwashes. J. Clin. Dent., 2011, 22, 183-186.
[65]  Samuels, N.; Grbic, J.T.; Saffer, A.J.; Wexler, I.D.; Williams, R.C. Effect of an herbal mouth rinse in preventing periodontal inflammation in an experimental gingivitis model: A pilot study. Compend. Contin. Educ. Dent., 2012, 33, 204-206, 208-211.
[66]  Zheng, C.Y.; Wang, Z.H. Effects of chlorhexidine, listerine and fluoride listerine mouthrinses on four putative root-caries pathogens in the biofilm. Chin. J. Dent. Res., 2011, 14, 135-140.
[67]  Oyanagi, T.; Tagami, J.; Matin, K. Potentials of mouthwashes in disinfecting cariogenic bacteria and biofilms leading to inhibition of caries. Open Dent. J., 2012, 6, 23-30.
[68]  Chen, Y.; Wong, R.W.; Seneviratne, C.J.; Hägg, U.; McGrath, C.; Samaranayake, L.P. Comparison of the antimicrobial activity of Listerine and Corsodyl on orthodontic brackets in vitro. Am. J. Orthod. Dentofacial Orthop., 2011, 140, 537-542.
[69]  Thaweboon, S.; Thaweboon, B. Effect of an essential oil-containing mouth rinse on VSC-producing bacteria on the tongue. Southeast Asian J. Trop. Med. Public Health, 2011, 42, 456-462.
[70]  Drake, D.; Villhauer, A.L. An in vitro comparative study determining bactericidal activity of stabilized chlorine dioxide and other oral rinses. J. Clin. Dent., 2011, 22, 1-5.
[71]  Sliepen, I.; Van Essche, M.; Quirynen, M.; Teughels, W. Effect of mouthrinses on Aggregatibacter actinomycetemcomitans biofilms in a hydrodynamic model. Clin. Oral Investig., 2010, 14, 241-250.
[72]  Abirami, C.P.; Venugopal, P.V. Antifungal activity of three mouth rinses – in vitro study. Indian J. Pathol. Microbiol., 2005, 48, 43-44.
[73]  Jacups, S.P.; Ball, T.S.; Paton, C.J.; Johnson, P.H.; Ritchie, S.A. Operational use of household bleach to “crash and release” Aedes aegypti prior to Wolbachia-infected mosquito release. J. Med. Entomol., 2013, 50, 344-351.
[74]  Goodyear, N. Effectiveness of five-day-old 10% bleach in a student microbiology laboratory setting. Clin. Lab. Sci., 2012, 25, 219-223.
[75]  Grabsch, E.A.; Mahony, A.A.; Cameron, D.R.; Martin, R.D.; Heland, M.; Davey, P.; Petty, M.; Xie, S.; Grayson, M.L. Significant reduction in vancomycin-resistant Enterococcus colonization and bacteraemia after introduction of a bleach-based cleaning-disinfection programme. J. Hosp. Infect., 2012, 82, 234-242.
[76]  Calfee, M.W.; Ryan, S.P.; Wood, J.P.; Mickelsen, L.; Kempter, C.; Miller, L.; Colby, M.; Touati, A.; Clayton, M.; Griffin-Gatchalian, N.; McDonald, S.; Delafield, R. Laboratory evaluation of large-scale decontamination approaches. J. Appl. Microbiol., 2012, 112, 874-882.
[77]  Ballereau, F.; Merville, C.; Lafleuriel, M.T.; Schrive, I. Stability and antimicrobial effectiveness of Javel water in a tropical hospital environment. Bull. Soc. Pathol. Exot., 1997, 90, 192-195.
[78]  Amoah, P.; Drechsel. P.; Abaidoo, R.C.; Klutse, A. Effectiveness of common and improved sanitary washing methods in selected cities of West Africa for the reduction of coliform bacteria and helminth eggs on vegetables. Trop. Med. Int. Health, 2007, 12, S40-S50.
[79]  Valera, M.C.; Maekawa, L.E.; Oliveira, L.D.; Jorge, A.O.; Shygei, E.; Carvalho, C.A. In vitro antimicrobial activity of auxiliary chemical substances and natural extracts on Candida albicans and Enterococcus faecalis in root canals. J. Appl. Oral Sci., 2013, 21, 2.
[80]  Vaziri, S.; Kangarlou, A.; Shahbazi, R.; Nazari Nasab, A.; Naseri, M. Comparison of the bactericidal efficacy of photodynamic therapy, 2.5% sodium hypochlorite, and 2% chlorhexidine against Enterococcous faecalis in root canals – An in vitro study. Dent. Res. J. (Isfahan), 2012, 9, 613-618.
[81]  Mohammadi, Z.; Giardino, L.; Palazzi, F.; Shahriari, S. Effect of initial irrigation with sodium hypochlorite on residual antibacterial activity of tetraclean. N. Y. State Dent. J., 2013, 79, 32-36.
[82]  Feliciano, L.; Li, J.; Lee, J.; Pascall, M.A. Efficacies of sodium hypochlorite and quaternary ammonium sanitizers for reduction of norovirus and selected bacteria during ware-washing operations. PLoS One, 2012, 7, e50273.
[83]  Farhad, A.R.; Barekatain, B.; Allameh, M.; Narimani, T. Evaluation of the antibacterial effect of calcium hydroxide in combination with three different vehicles: An in vitro study. Dent. Res. J. (Isfahan), 2012, 9, 167-172.
[84]  Altieri, K.T.; Sanitá, P.V.; Machado, A.L.; Giampaolo, E.T.; Pavarina, A.C.; Vergani, C.E. Effectiveness of two disinfectant solutions and microwave irradiation in disinfecting complete dentures contaminated with methicillin-resistant Staphylococcus aureus. J. Am. Dent. Assoc., 2012, 143, 270-277.
[85]  Zand, V.; Salem-Milani, A.; Shahi, S.; Akhi, M.T.; Vazifekhah, S. Efficacy of different concentrations of sodium hypochlorite and chlorhexidine in disinfection of contaminated Resilon cones. Med. Oral Patol. Oral Cir. Bucal., 2012, 17, e352-e355.
[86]  Madrid, I.M.; Mattei, A.S.; Santin, R.; dos Reis Gomes, A.; Cleff, M.B.; Meireles, M.C. Inhibitory effect of sodium hypochlorite and chlorhexidine digluconate in clinical isolates of Sporothrix schenckii. Mycoses, 2012, 55, 281-285.
[87]  Ogunshe, A.A.; Omotoso, O.A.; Akindele, T.M. Soaps and germicides as adjunct topical antimycotic agents on Candida species implicated in vulvovaginal candidasis. East. Afr. J. Public Health, 2011, 8, 112-118.
[88]  Young, R.; Buckley, L.; McEwan, N.; Nuttall, T. Comparative in vitro efficacy of antimicrobial shampoos: A pilot study. Vet. Dermatol., 2012, 23, 36-40, e8.
[89]  Ogbulie, J.N.; Adieze, I.E.; Nwankwo, N.C. Susceptibility pattern of some clinical bacterial isolates to selected antibiotics and disinfectants. Pol. J. Microbiol., 2008, 57, 199-204.
[90]  Messager, S.; Goddard, P.A.; Dettmar, P.W.; Maillard, J.Y. Comparison of two in vivo and two ex vivo tests to assess the antibacterial activity of several antiseptics. J. Hosp. Infect., 2004, 58, 115-121.
[91]  Schäfer, E.; Bossmann, K. Antimicrobial efficacy of chloroxylenol and chlorhexidine in the treatment of infected root canals. Am. J. Dent., 2001, 14, 233-237.
[92]  Wichelhaus, A.; Bader, F.; Sander, F.G.; Krieger, D.; Mertens, T. Effective disinfection of orthodontic pliers. J. Orofac. Orthop., 2006, 67, 316-336.
[93]  Navarro-Escobar, E.; Baca, P.; González-Rodríguez, M.P.; Arias-Moliz, M.T.; Ruiz, M.; Ferrer-Luque, C.M. Ex vivo microbial leakage after using different final irrigation regimens with chlorhexidine. J. Appl. Oral Sci., 2013, 21, 74-79.
[94]  Climo, M.W.; Yokoe, D.S.; Warren, D.K.; Perl, T.M.; Bolon, M.; Herwaldt, L.A.; Weinstein, R.A.; Sepkowitz, K.A.; Jernigan, J.A.; Sanogo, K.; Wong, E.S. Effect of daily chlorhexidine bathing on hospital-acquired infection. N. Engl. J. Med., 2013, 368, 533-542.
[95]  Pradeep, A.R.; Kumari, M.; Priyanka, N.; Naik, S.B. Efficacy of chlorhexidine, metronidazole and combination gel in the treatment of gingivitis – A randomized clinical trial. J. Int. Acad. Periodontol., 2012, 14, 91-96.
[96]  Salim, N.; Moore, C.; Silikas, N.; Satterthwaite, J.; Rautemaa, R. Chlorhexidine is a highly effective topical broad-spectrum agent against Candida spp. Int. J. Antimicrob. Agents, 2013, 41, 65-69.
[97]  Rupp, M.E.; Cavalieri, R.J.; Lyden, E.; Kucera, J.; Martin, M.; Fitzgerald, T.; Tyner, K.; Anderson, J.R.; VanSchooneveld, T.C. Effect of hospital-wide chlorhexidine patient bathing on healthcare-associated infections. Infect. Control Hosp. Epidemiol., 2012, 33, 1094-1100.
[98]  Baradari, A.G.; Khezri, H.D.; Arabi, S. Comparison of antibacterial effects of oral rinses chlorhexidine and herbal mouth wash in patients admitted to intensive care unit. Bratisl. Lek. Listy., 2012, 113, 556-560.
[99]  Johnson, M.D.; Schlett, C.D.; Grandits, G.A.; Mende, K.; Whitman, T.J.; Tribble, D.R.; Hospenthal, D.R.; Murray, P.R. Chlorhexidine does not select for resistance in Staphylococcus aureus isolates in a community setting. Infect. Control Hosp. Epidemiol., 2012, 33, 1061-1063.
[100]  Horner, C.; Mawer, D.; Wilcox, M. Reduced susceptibility to chlorhexidine in Staphylococci: Is it increasing and does it matter? J. Antimicrob. Chemother., 2012, 67, 2547-2559.
[101]  Hannig, C.; Basche, S.; Burghardt, T.; Al-Ahmad, A.; Hannig, M. Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin. Oral Investig., 2013, 17, 805-814.
[102]  Moeintaghavi, A.; Arab, H.; Khajekaramodini, M.; Hosseini, R.; Danesteh, H.; Niknami, H. In vitro antimicrobial comparison of chlorhexidine, persica mouthwash and miswak extract. J. Contemp. Dent. Pract., 2012, 13, 147-152.
[103]  Baca, P.; Junco, P.; Arias-Moliz, M.T.; Castillo, F.; Rodríguez-Archilla, A.; Ferrer-Luque, C.M. Antimicrobial substantivity over time of chlorhexidine and cetrimide. J. Endod., 2012, 38, 927-930.
[104]  Naparstek, L.; Carmeli, Y.; Chmelnitsky, I.; Banin, E.; Navon-Venezia, S. Reduced susceptibility to chlorhexidine among extremely-drug-resistant strains of Klebsiella pneumoniae. J. Hosp. Infect., 2012, 81, 15-19.
[105]  Peros, K.; Mestrovic, S.; Anic-Milosevic, S.; Rosin-Grget, K.; Slaj, M. Antimicrobial effect of different brushing frequencies with fluoride toothpaste on Streptococcus mutans and Lactobacillus species in children with fixed orthodontic appliances. Korean J. Orthod., 2012, 42, 263-269.
[106]  Malhotra, N.; Rao, S.P.; Acharya, S.; Vasudev, B. Comparative in vitro evaluation of efficacy of mouthrinses against Streptococcus mutans, Lactobacilli and Candida albicans. Oral Health Prev. Dent., 2011, 9, 261-268.
[107]  Hitz Lindenmüller, I.; Lambrecht, J.T. Oral care. Curr. Probl. Dermatol., 2011, 40, 107-115.
[108]  Lobo, P.L.; de Carvalho, C.B.; Fonseca, S.G.; de Castro, R.S.; Monteiro, A.J.; Fonteles, M.C.; Fonteles, C.S. Sodium fluoride and chlorhexidine effect in the inhibition of Streptococci mutans in children with dental caries: A randomized, double-blind clinical trial. Oral Microbiol. Immunol., 2008, 23, 486-491.
[109]  Flisfisch, S.; Meyer, J.; Meurman, J.H.; Waltimo, T. Effects of fluorides on Candida albicans. Oral Dis., 2008, 14, 296-301.
[110]  Rioboo, M.; García, V.; Serrano, J.; O’Connor, A.; Herrera, D.; Sanz, M. Clinical and microbiological efficacy of an antimicrobial mouth rinse containing 0.05% cetylpyridinium chloride in patients with gingivitis. Int. J. Dent. Hyg., 2012, 10, 98-106.
[111]  Herrera, D.; Roldán, S.; Santacruz, I.; Santos, S.; Masdevall, M.; Sanz, M. Differences in antimicrobial activity of four commercial 0.12% chlorhexidine mouthrinse formulations: An in vitro contact test and salivary bacterial counts study. J. Clin. Periodontol., 2003, 30, 307-314.
[112]  Bélanger-Giguère, K.; Giguère, S.; Bélanger, M. Disinfection of toothbrushes contaminated with Streptococcus mutans. Am. J. Dent., 2011, 24, 155-158.
[113]  Otten, M.P.; Busscher, H.J.; van der Mei, H.C.; Abbas, F.; van Hoogmoed, C.G. Retention of antimicrobial activity in plaque and saliva following mouthrinse use in vivo. Caries Res., 2010, 44, 459-464.
[114]  Pan, P.C.; Harper, S.; Ricci-Nittel, D.; Lux, R.; Shi, W. In-vitro evidence for efficacy of antimicrobial mouthrinses. J. Dent., 2010, 38, S16-S20.
[115]  Feres, M.; Figueiredo, L.C.; Faveri, M.; Stewart, B.; de Vizio, W. The effectiveness of a preprocedural mouthrinse containing cetylpyridinium chloride in reducing bacteria in the dental office. J. Am. Dent. Assoc., 2010, 141, 415-422.
[116]  Witt, J.; Ramji, N.; Gibb, R.; Dunavent, J.; Flood, J.; Barnes, J. Antibacterial and antiplaque effects of a novel, alcohol-free oral rinse with cetylpyridinium chloride. J. Contemp. Dent. Pract., 2005, 6, 1-9.
[117]  Arias-Moliz, M.T.; Ferrer-Luque, C.M.; González-Rodríguez, M.P.; Navarro-Escobar, E.; de Freitas, M.F.; Baca, P. Antimicrobial activity and Enterococcus faecalis biofilm formation on chlorhexidine varnishes. Med. Oral Patol. Oral Cir. Bucal., 2012, 17, e705-e709.
[118]  Karpanen, T.J.; Worthington, T.; Hendry, E.R.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. J. Antimicrob. Chemother., 2008, 62, 1031-1036.
[119]  Sykes, G. The sporicidal properties of chemical disinfectants. J. Appl. Bacteriol., 1970, 33, 147-156.
[120]  Watanabe, E.; Tanomaru, J.M.; Nascimento, A.P.; Matoba-Júnior, F.; Tanomaru-Filho, M.; Yoko Ito, I. Determination of the maximum inhibitory dilution of cetylpyridinium chloride-based mouthwashes against Staphylococcus aureus: An in vitro study. J. Appl. Oral Sci., 2008, 16, 275-279.
[121]  Hendry, E.R.; Worthington, T.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J. Antimicrob. Chemother., 2009, 64, 1219-1225.
[122]  Kato, T.; Iijima, H.; Ishihara, K.; Kaneko, T.; Hirai, K.; Naito, Y.; Okuda, K. Antibacterial effects of Listerine on oral bacteria. Bull. Tokyo Dent. Coll., 1990, 31, 301-307.
[123]  Battino, M.; Ferreiro, M.S.; Fattorini, D.; Bullon, P. In vitro antioxidant activities of mouthrinses and their components. J. Clin. Periodontol., 2002, 29, 462-467.
[124]  Zimmermann, M.; Preac-Mursic, V. In vitro activity of taurolidine, chlorophenol-camphor-menthol and chlorhexidine against oral pathogenic microorganisms. Arzneimittelforschung, 1992, 42, 1157-1159.
[125]  Seet, A.N.; Zilm, P.S.; Gully, N.J.; Cathro, P.R. Qualitative comparison of sonic or laser energisation of 4% sodium hypochlorite on an Enterococcus faecalis biofilm grown in vitro. Aust. Endod. J., 2012, 38, 100-106.
[126]  Miranda, R.G.; Santos, E.B.; Souto, R.M.; Gusman, H.; Colombo, A.P. Ex vivo antimicrobial efficacy of the EndoVac® system plus photodynamic therapy associated with calcium hydroxide against intracanal Enterococcus faecalis. Int. Endod. J., 2013, 46, 499-505.
[127]  Collao, B.; Morales, E.H.; Gil, F.; Polanco, R.; Calderón, I.L.; Saavedra, C.P. Differential expression of the transcription factors MarA, Rob, and SoxS of Salmonella Typhimurium in response to sodium hypochlorite: Down-regulation of rob by MarA and SoxS. Arch. Microbiol., 2012, 194, 933-942.
[128]  Ordinola-Zapata, R.; Bramante, C.M.; Brandão Garcia, R.; Bombarda de Andrade, F.; Bernardineli, N.; Gomes de Moraes, I.; Duarte, M.A. The antimicrobial effect of new and conventional endodontic irrigants on intra-orally infected dentin. Acta Odontol. Scand., 2013, 71, 424-431.
[129]  Suwa, M.; Oie, S.; Furukawa, H. Efficacy of disinfectants against naturally occurring and artificially cultivated bacteria. Biol. Pharm. Bull., 2013, 36, 360-363.
[130]  Xu, Y.; He, Y.; Li, X.; Gao, C.; Zhou, L.; Sun, S.; Pang, G. Antifungal effect of ophthalmic preservatives phenylmercuric nitrate and benzalkonium chloride on ocular pathogenic filamentous fungi. Diagn. Microbiol. Infect. Dis., 2013, 75, 64-67.
[131]  Jaramillo, D.E.; Arriola, A.; Safavi, K.; Chávez de Paz, L.E. Decreased bacterial adherence and biofilm growth on surfaces coated with a solution of benzalkonium chloride. J. Endod., 2012, 38, 821-825.
[132]  Suzuki, T.; Kataoka, H.; Ida, T.; Kamachi, K.; Mikuniya, T. Bactericidal activity of topical antiseptics and their gargles against Bordetella pertussis. J. Infect. Chemother., 2012, 18, 272-275.
[133]  Machado, I.; Lopes, S.P.; Sousa, A.M.; Pereira, M.O. Adaptive response of single and binary Pseudomonas aeruginosa and Escherichia coli biofilms to benzalkonium chloride. J. Basic Microbiol., 2012, 52, 43-52.
[134]  Machado, I.; Graça, J.; Sousa, A.M.; Lopes, S.P.; Pereira, M.O. Effect of antimicrobial residues on early adhesion and biofilm formation by wild-type and benzalkonium chloride-adapted Pseudomonas aeruginosa. Biofouling, 2011, 27, 1151-1159.
[135]  Hirayama, M. The antimicrobial activity, hydrophobicity and toxicity of sulfonium compounds, and their relationship. Biocontrol Sci., 2011, 16, 23-31.
[136]  McCay, P.H.; Ocampo-Sosa, A.A.; Fleming, G.T. Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture. Microbiology, 2010, 156, 30-38.
[137]  Torkelson, A.A.; da Silva, A.K.; Love, D.C.; Kim, J.Y.; Alper, J.P.; Coox, B.; Dahm, J.; Kozodoy, P.; Maboudian, R.; Nelson, K.L. Investigation of quaternary ammonium silane-coated sand filter for the removal of bacteria and viruses from drinking water. J. Appl. Microbiol., 2012, 113, 1196-1207.
[138]  Mei, L.; Ren, Y.; Loontjens, T.J.; van der Mei, H.C.; Busscher, H.J. Contact-killing of adhering streptococci by a quaternary ammonium compound incorporated in an acrylic resin. Int. J. Artif. Organs, 2012, 35, 854-863.
[139]  Soumet, C.; Fourreau, E.; Legrandois, P.; Maris, P. Resistance to phenicol compounds following adaptation to quaternary ammonium compounds in Escherichia coli. Vet. Microbiol., 2012, 158, 147-152.
[140]  Ma, S.; Izutani, N.; Imazato, S.; Chen, J.H.; Kiba, W.; Yoshikawa, R.; Takeda, K.; Kitagawa, H.; Ebisu, S. Assessment of bactericidal effects of quaternary ammonium-based antibacterial monomers in combination with colloidal platinum nanoparticles. Dent. Mater. J., 2012, 31, 150-156.
[141]  Tischer, M.; Pradel, G.; Ohlsen, K.; Holzgrabe, U. Quaternary ammonium salts and their antimicrobial potential: Targets or nonspecific interactions? ChemMedChem, 2012, 7, 22-31.
[142]  Buffet-Bataillon, S.; Branger, B.; Cormier, M.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Effect of higher minimum inhibitory concentrations of quaternary ammonium compounds in clinical E. coli isolates on antibiotic susceptibilities and clinical outcomes. J. Hosp. Infect., 2011, 79, 141-146.
[143]  Shahid, M.A.; Abubakar, M.; Hameed, S.; Hassan, S. Avian influenza virus (H5N1): Effects of physico-chemical factors on its survival. Virol. J., 2009, 6, 38.
[144]  Chanawanno, K.; Chantrapromma, S.; Anantapong, T.; Kanjana-Opas, A.; Fun, H.K. Synthesis, structure and in vitro antibacterial activities of new hybrid disinfectants quaternary ammonium compounds: Pyridinium and quinolinium stilbene benzenesulfonates. Eur. J. Med. Chem., 2010, 45, 4199-4208.
[145]  Gottardi, W.; Debabov, D.; Nagl, M. N-Chloramines, a promising class of well-tolerated topical anti-infectives. Antimicrob. Agents Chemother., 2013, 57, 1107-1114.
[146]  Herczegh, A.; Ghidan, A.; Friedreich, D.; Gyurkovics, M.; Bendő, Z.; Lohinai, Z. Effectiveness of a high purity chlorine dioxide solution in eliminating intracanal Enterococcus faecalis biofilm. Acta Microbiol. Immunol. Hung., 2013, 60, 63-75.
[147]  Li, X.Z.; Wei, X.; Zhang, C.J.; Jin, X.L.; Tang, J.J.; Fan, G.J.; Zhou, B. Hypohalous acid-mediated halogenation of resveratrol and its role in antioxidant and antimicrobial activities. Food Chem., 2012, 135, 1239-1244.
[148]  Lakshmi, C.; Srinivas, C.R.; Anand, C.V.; Mathew, A.C. Irritancy ranking of 31 cleansers in the Indian market in a 24-h patch test. Int. J. Cosmet. Sci., 2008, 30, 277-283.
[149]  Birnie, C.R.; Malamud, D.; Schnaare, R.L. Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N, N-dimethylamine oxides with variations in chain length. Antimicrob. Agents Chemother., 2000, 44, 2514-2517.
[150]  Birnie, C.R.; Malamud, D.; Thomulka, K.W.; Schwartz, J.B.; Schnaare, R.L. Antimicrobial and diffusional correlation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides from semisolids. J. Pharm. Sci., 2001, 90, 1386-1394.
[151]  Salem-Milani, A.; Balaei-Gajan, E.; Rahimi, S.; Moosavi, Z.; Abdollahi, A.; Zakeri-Milani, P.; Bolourian, M. Antibacterial effect of Diclofenac sodium on Enterococcus faecalis. J. Dent. (Tehran), 2013, 10, 16-22.
[152]  Wada, A.; Kono, M.; Kawauchi, S.; Takagi, Y.; Morikawa, T.; Funakoshi, K. Rapid discrimination of Gram-positive and Gram-negative bacteria in liquid samples by using NaOH-sodium dodecyl sulfate solution and flow cytometry. PLoS One, 2012, 7, e47093.
[153]  Pagani, G.; Borgna, P.; Piersimoni, C.; Nista, D.; Terreni, M.; Pregnolato, M. In vitro anti-Mycobacterium avium activity of N-(2-hydroxyethyl)-1,2-benzisothiazol-3(2H)-one and -thione carbamic esters. Arch. Pharm. (Weinheim), 1996, 329, 421-425.
[154]  Arseculeratne, S.N.; Atapattu, D.N.; Balasooriya, P.; Fernando, R. The effects of biocides (antiseptics and disinfectants) on the endospores of Rhinosporidium seeberi. Indian J. Med. Microbiol., 2006, 24, 85-91.
[155]  Dellanno, C.; Vega, Q.; Boesenberg, D. The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus. Am. J. Infect. Control, 2009, 37, 649-652.
[156]  Mansouri, M.D.; Darouiche, R.O. In-vitro activity and in-vivo efficacy of catheters impregnated with chloroxylenol and thymol against uropathogens. Clin. Microbiol. Infect., 2008, 14, 190-192.
[157]  Atiş, M.; Karipcin, F.; Sarıboğa, B.; Taş, M.; Çelik, H. Structural, antimicrobial and computational characterization of 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 98, 290-301.
[158]  Cui, Y.; Kang, M.S.; Woo, S.G.; Jin, L.; Kim, K.K.; Park, J.; Lee, M.; Lee, S.T. Brevibacterium daeguense sp. nov., a nitrate-reducing bacterium isolated from a 4-chlorophenolenrichment culture. Int. J. Syst. Evol. Microbiol., 2013, 63, 152-157.
[159]  Pacios, M.G.; Silva, C.; López, M.E.; Cecilia, M. Antibacterial action of calcium hydroxide vehicles and calcium hydroxide pastes. J. Investig. Clin. Dent., 2012, 3, 264-270.
[160]  Zore, G.B.; Thakre, A.D.; Rathod, V.; Karuppayil, S.M. Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: Inhibition of growth, dimorphism and sensitization. Mycoses, 2011, 54, e99-e109.
[161]  Kotan, R.; Kordali, S.; Cakir, A. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Naturforsch. C, 2007, 62, 507-513.
[162]  Bester, K.; Banzhaf, S.; Burkhardt, M.; Janzen, N.; Niederstrasser, B.; Scheytt, T. Activated soil filters for removal of biocides from contaminated run-off and waste-waters. Chemosphere, 2011, 85, 1233-1240.
[163]  Shenoy, V.P.; Ballal, M.; Shivananda, P.; Bairy, I. Honey as an antimicrobial agent against Pseudomonas aeruginosa isolated from infected wounds. J. Glob. Infect. Dis., 2012, 4, 102-105.
[164]  Konidala, U.; Nuvvula, S.; Mohapatra, A.; Nirmala, S.V. Efficacy of various disinfectants on microbially contaminated toothbrushes due to brushing. Contemp. Clin. Dent., 2011, 2, 302-307.
[165]  Verma, G.K.; Mahajan, V.K.; Shanker, V.; Tegta, G.R.; Jindal, N.; Minhas, S. Contact depigmentation following irritant contact dermatitis to chloroxylenol (Dettol). Indian J. Dermatol. Venereol. Leprol., 2011, 77, 612-614.
[166]  Ogunshe, A.A.; Omotoso, O.A.; Akindele, T.M. Soaps and germicides as adjunct topical antimycotic agents on candida species implicated in vulvovaginal candidasis. East Afr. J. Public Health, 2011, 8, 112-118.
[167]  Ogbulie, J.N.; Adieze, I.E.; Nwankwo, N.C. Susceptibility pattern of some clinical bacterial isolates to selected antibiotics and disinfectants. Pol. J. Microbiol., 2008, 57, 199-204.
[168]  Digison, M.B. A review of anti-septic agents for pre-operative skin preparation. Plast. Surg. Nurs., 2007, 27, 185-189.
[169]  Wilson, M.; Mowad, C. Chloroxylenol. Dermatitis, 2007, 18, 120-121.
[170]  Boutli, F.; Zioga, M.; Koussidou, T.; Ioannides, D.; Mourellou, O. Comparison of chloroxylenol 0.5% plus salicylic acid 2% cream and benzoyl peroxide 5% gel in the treatment of Acne vulgaris: A randomized double-blind study. Drugs Exp. Clin. Res., 2003, 29, 101-105.
[171]  Lear, J.C.; Maillard, J.Y.; Dettmar, P.W.; Goddard, P.A.; Russell, A.D. Chloroxylenol- and triclosan-tolerant bacteria from industrial sources. J. Ind. Microbiol. Biotechnol., 2002, 29, 238-242.
[172]  Haddad, J.J. On the cellular and molecular regulatory transcriptional mechanisms and responsive putative pathways to inflammatory oxidative stress revisited: Current immunological breakthroughs and views at a glance. Antiinflamm. Antiallergy Agents Med. Chem., 2013, 12, 141-157.
[173]  Hanbali, L.B.; Ghadieh, R.M.; Hasan, H.A.; Nakhal, Y.K.; Haddad, J.J. Measurement of antioxidant activity and antioxidant compounds under versatile extractions conditions: I. The immuno-biochemical antioxidant properties of sweet cherry (Prunus avium) extracts. Antiinflamm. Antiallergy Agents Med. Chem., 2013, 12, 173-187.
[174]  Haddad, J.J.; Ghadieh, R.M.; Hasan, H.A.; Nakhal, Y.K.; Hanbali, L.B. Measurement of antioxidant activity and antioxidant compounds under versatile extractions conditions: II. The immuno-biochemical antioxidant properties of black sour cherry (Prunus cerasus) extracts. Antiinflamm. Antiallergy Agents Med. Chem., 2013, 12, 229-245.
[175]  Hanbali, L.B.; Amiry, J.G.; Ghadieh, R.M.; Hasan, H.A.; Koussan, S.S.; Nakhal, Y.K.; Tarraf, A.M.; Haddad, J.J. The antimicrobial activity of sweet cherry (Prunus avium) extracts: I. Measurement of sensitivity and attenuation of gram-positive and gram-negative bacteria and C. albicans in culture. Curr. Nutr. Food Sci., 2012, 8, 275-291.
[176]  Hanbali, L.B.; Amiry, J.G.; Ghadieh, R.M.; Hasan, H.A.; Koussan, S.S.; Nakhal, Y.K.; Tarraf, A.M.; Haddad, J.J. The antimicrobial activity of sweet cherry (Prunus avium) extracts: II. Measurement of sensitivity and attenuation of gram-positive and gram-negative bacteria and C. albicans in culture. Curr. Nutr. Food Sci., 2012, 8, 292-303.
[177]  Aranda-Garcia, A.R.; Guerreiro-Tanomaru, J.M.; Faria-Júnior, N.B.; Chavez-Andrade, G.M.; Leonardo, R.T.; Tanomaru-Filho, M.; Bonetti-Filho, I. Antibacterial effectiveness of several irrigating solutions and the Endox Plus system – An ex vivo study. Int. Endod. J., 2012, 45, 1091-1096.
[178]  Barnett, M. Role of therapeutic antimicrobial mouthrinses in clinical practice. J. Am. Dental Assoc., 2003, 134, 699-702.
[179]  Fine, D.H.; Furgang, D.; Barnett, M. Comparative antimicrobial activities of antiseptic mouthrinses against isogenic planktonic and biofilm forms of Actinobacillus actinomycetemcomitans. J. Clin. Periodontol., 2001, 28, 697-700.
[180]  Mankodi, S.M.; Mostler, K.M.; Charles, C.H.; Bartels, L.L. Comparative antiplaque and antigingivitis effectiveness of a chlorhexidine and an essential oil mouthrinse: 6 month clinical trial. J. Clin. Periodontol., 2004, 31, 878-884.
[181]  Aarnisalo, K.; Salo, S.; Miettinen, H.; Suihko, M.L.; Wirtanen, G.; Autio, T.; Lunden, J. Korkeala, H. Bactericidal efficiencies of commercial disinfectants against Listeria monocytogenes on surfaces. J. Food Saf., 2000, 20, 237-250.
[182]  Arnold, J.W.; deLaubenfels, E.; Zambelli-Weiner, A. Quantitative assessment of hard surface disinfectant activity against the foodborne pathogen Listeria monocytogenes. J. AOAC Int., 2006, 89, 1617-1621.
[183]  Chavant, P.; Gaillard-Martine, B.; Hebraud, M. Antimicrobial effects of sanitizers against planktonic and sessile Listeria monocytogenes cells according to the growth phase. FEMS Microbiol. Lett., 2004, 236, 241-248.
[184]  Bonesvoll, P.; Gjermo, P. A comparison between chlorhexidine and some quaternary ammonium compounds with regard to retention, salivary concentration and plaque-inhibiting effect in the human mouth after mouth rinses. Arch. Oral Biol., 1978, 23, 289-294.
[185]  Dilek, A.; Buzrul, M.; Alpas, H.; Akcelik, M. Hypochlorite inactivation kinetics of lactococcal bacteriophages. LWT Food Sci. Technol., 2007, 40, 1369-1375.
[186]  Araj, G.F. Available laboratory tests to guide antimicrobial therapy. J. Med. Lib., 2000, 48, 199-202.
[187]  Cole, E.C.; Addison, R.M.; Rubino, J. R.; Leese, K.E.; Dulaney, P.D.; Newell, M.S.; Wilkins, J.; Gaber, D.J.; Wineinger, T.; Criger, D.A. Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J. Appl. Microbiol., 2003, 95, 664-676.
[188]  Sturenburg, E.; Mack, D. Extended spectrum β-lactamases: Implications for the clinical microbiology laboratory, therapy, and infection control. J. Infect., 2003, 47, 273-295.
[189]  Webber, M.; Piddock, L.J.V. Quinolone resistance in Escherichia coli. Vet. Res., 2001, 32, 275-284.
[190]  Best, M.; Kennedy, M.E.; Coates, F. Efficacy of a variety of disinfectants against Listeria spp. Appl. Env. Microbiol., 1990, 56, 377-380.
[191]  Bloomfield, S.F.; Arthur, M.; Begun, K.; Patel, H. Comparative testing of disinfectants using proposed European surface test methods. Lett. Appl. Microbiol., 1993, 17, 119-125.
[192]  Jacquet, C.; Reynaud, A. Differences in the sensitivity to eight disinfectants of Listeria monocytogenes strains as related to their origin. Int. J. Food Microbiol., 1994, 22, 79-83.
[193]  Mosteller, T.M.; Bishop, J.R. Sanitizer efficacy against attached bacteria in a milk biofilm. J. Food Prot., 1993, 56, 34-41.
[194]  Thorn, R.M.; Robinson, G.M.; Reynolds, D.M. Comparative antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solutions evaluated using a novel standardized assay. Antimicrob. Agents Chemother., 2013, 57, 2216-2225.
[195]  Lucas, L.; Cicerale, S.; Keast, R. The anti-inflammatory and pharmacological actions of oleocanthal, a phenolic contained in extra virgin olive oil. Antiinflamm. Antiallergy Agents Med. Chem., 2011, 10, 399-406.
[196]  Sultana, N.; Saify, Z.S. Naturally occurring and synthetic agents as potential anti-inflammatory and immunomodulants. Antiinflamm. Antiallergy Agents Med. Chem., 2012, 11, 3-19.
[197]  Kontogiorgis, C.A.; Bompou, E.-M.; Ntella, M.; Vanden Berghe, W. Natural products from Mediterranean diet: From anti-inflammatory agents to dietary epigenetic modulators. Antiinflamm. Antiallergy Agents Med. Chem., 2010, 9, 101-124.
[198]  Patel, J.I.; Deshpande, S.S. Anti-allergic and antioxidant activity of 5-hydroxy-3,6,7,3,4’-pentamethoxy flavone isolated from leaves of vitex negundo. Antiinflamm. Antiallergy Agents Med. Chem., 2011, 10, 442-451.
[199]  Stojicic, S.; Shen, Y.; Haapasalo, M. Effect of the source of biofilm bacteria, level of biofilm maturation, and type of disinfecting agent on the susceptibility of biofilm bacteria to antibacterial agents. J. Endod., 2013, 39, 473-477.
[200]  Coulthard, C.E.; Skyes, G. Germicidal effect of alcohol. Pharm. J., 1936, 137, 79-81.
[201]  Walters, T.H.; Furr, J.R.; Russell, A.D. Antifungal action of chlorhexidine. Microbios, 1983, 38, 195-204.
[202]  Springthorpe, V.S.; Grenier, J.L.; Lloyd-Evans, N.; Sattar, S.A. Chemical disinfection of human rotaviruses: Efficacy of commercially-available products in suspension tests. J. Hyg., 1986, 97, 139-161.
[203]  McKenna, S.M.; Davies, K.J.A. The inhibition of bacterial growth by hypochlorous acid. Biochem. J., 1988, 254, 685-692.
[204]  Stickler, D.J.; Dolman, J.; Rolfe, S.; Chawla, J. Activity of some antiseptics against urinary Escherichia coli growing as biofilms on silicone surfaces. Eur. J. Clin. Microbiol. Infect. Dis., 1989, 8, 974-978.
[205]  Reverdy, M.-E.; Bes, M.; Nervi, C.; Martra, A.; Fleurette J. Activity of four antiseptics (acriflavine, benzalkonium chloride, chlorhexidine digluconate and hexamidine di-isethionate) and of ethidium bromide on 392 strains representing 26 Staphylococcus species. Med. Microbiol. Lett., 1992, 1, 56-63.
[206]  Baillie, L.W.J.; Wade, J.J.; Casewell, M.W. Chlorhexidine sensitivity of Enterococcus faecium resistant to vancomycin, high levels of gentamicin, or both. J. Hosp. Infect., 1992, 20, 127-128.
[207]  Denyer, S.P. Mechanisms of action of antibacterial biocides. Int. Biodeterior. Biodegrad., 1995, 36, 227-245.
[208]  Russell, A.D.; Furr, J.R.; Maillard, J.-Y. Microbial susceptibility and resistance to biocides. ASM News, 1997, 63, 481-487.
[209]  Luddin, N.; Ahmed, H.M. The antibacterial activity of sodium hypochlorite and chlorhexidine against Enterococcus faecalis: A review on agar diffusion and direct contact methods. J. Conserv. Dent., 2013, 16, 9-16.
[210]  McDanel, J.S.; Murphy, C.R.; Diekema, D.J.; Quan, V.; Kim, D.S.; Peterson, E.M.; Evans, K.D.; Tan, G.L.; Hayden, M.K.; Huang, S.S. Chlorhexidine and mupirocin susceptibilities of methicillin-resistant Staphylococcus aureus from colonized nursing home residents. Antimicrob. Agents Chemother., 2013, 57, 552-558.
[211]  Zubko, E.I.; Zubko, M.K. Co-operative inhibitory effects of hydrogen peroxide and iodine against bacterial and yeast species. BMC Res. Notes, 2013, 6, 272.
[212]  Krause, R.; Ribitsch, W.; Schilcher, G. Daily chlorhexidine bathing and hospital-acquired infection. N. Engl. J. Med., 2013, 368, 2331-2332.
[213]  Thrall, T.H. Complete cleaning: Improved cleaners, disinfectants, monitoring systems and training help close the loop on infection prevention. Health Facil. Manage., 2013, 26, 43-46.
[214]  Bradford, B.D.; Seiberling, K.A.; Park, F.E.; Hiebert, J.C.; Chang, D.F. Disinfection of rigid nasal endoscopes following in vitro contamination with Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Haemophilus influenzae. JAMA Otolaryngol. Head Neck Surg., 2013, 139, 574-578.
[215]  Alonso-Hernando, A.; Guevara-Franco, J.A.; Alonso-Calleja, C.; Capita, R. Effect of the temperature of the dipping solution on the antimicrobial effectiveness of various chemical decontaminants against pathogenic and spoilage bacteria on poultry. J. Food Prot., 2013, 76, 833-842.
[216]  Seenama, C.; Tachasirinugune, P.; Jintanothaitavorn, D.; Kachintorn, K.; Thamlikitkul, V. Effectiveness of disinfectant wipes for decontamination of bacteria on patients’ environmental and medical equipment surfaces at Siriraj Hospital. J. Med. Assoc. Thai., 2013, 96, S111-S116.
[217]  Godoy, P.; Castilla, J.; Delgado-Rodríguez, M.; Martín, V.; Soldevila, N.; Alonso, J.; Astray, J.; Baricot, M.; Cantón, R.; Castro, A.; González-Candelas, F.; Mayoral, J.M.; Quintana, J.M.; Pumarola, T.; Tamames, S.; Domínguez, A.; CIBERESP Cases and Controls in Pandemic Influenza Working Group, Spain. Effectiveness of hand hygiene and provision of information in preventing influenza cases requiring hospitalization. Prev. Med., 2012, 54, 434-439.
[218]  Larson, E.L.; Cohen, B.; Baxter, K.A. Analysis of alcohol-based hand sanitizer delivery systems: Efficacy of foam, gel, and wipes against influenza A (H1N1) virus on hands. Am. J. Infect. Control, 2012, 40, 806-809.
[219]  Evans, V.A.; Orris, P. The use of alcohol-based hand sanitizers by pregnant health care workers. J. Occup. Environ. Med., 2012, 54, 3.
[220]  Jacups, S.P.; Ball, T.S.; Paton, C.J.; Johnson, P.H.; Ritchie, S.A. Operational use of household bleach to “crash and release” Aedes aegypti prior to Wolbachia-infected mosquito release. J. Med. Entomol., 2013, 50, 344-351.
[221]  Weitz, N.A.; Lauren, C.T.; Weiser, J.A.; LeBoeuf, N.R.; Grossman, M.E.; Biagas, K.; Garzon, M.C.; Morel, K.D. Chlorhexidine gluconate-impregnated central access catheter dressings as a cause of erosive contact dermatitis: A report of 7 cases. JAMA Dermatol., 2013, 149, 195-199.