American Journal of Energy Research
ISSN (Print): 2328-7349 ISSN (Online): 2328-7330 Website: https://www.sciepub.com/journal/ajer Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Energy Research. 2025, 13(1), 1-7
DOI: 10.12691/ajer-13-1-1
Open AccessArticle

Evaluation of PV Module Reliability Across A Temperature Range, Spanning A Period of 0 and 35 Years

Abdoulaye Kabré1, , Dominique Bonkoungou1, 2 and Zacharie Koalaga1

1Laboratoire de Matériaux et Environnement (LAME), Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou, Burkina Faso

2Laboratoire de Sciences et Technologies (LaST), Université Thomas SANKARA, 12 BP 417 Saaba, Burkina Faso

Pub. Date: March 01, 2025

Cite this paper:
Abdoulaye Kabré, Dominique Bonkoungou and Zacharie Koalaga. Evaluation of PV Module Reliability Across A Temperature Range, Spanning A Period of 0 and 35 Years. American Journal of Energy Research. 2025; 13(1):1-7. doi: 10.12691/ajer-13-1-1

Abstract

Solar energy, being both abundant and environmentally friendly, holds great promise as a renewable energy source. It can be converted into electricity through photovoltaic (PV) modules, which are crucial in the shift towards renewable energy. While PV modules are typically designed for a 25-year lifespan, their performance is significantly affected by environmental factors, especially ambient temperature. PV modules are normally tested under standardized conditions (25°C, 1000 W/m², AM1.5), that differ from real-world outdoor environments. However, temperature fluctuations can reduce their efficiency and accelerate material degradation, potentially undermining the reliability of these PV modules. This study aims to analyze the reliability of PV modules in Burkina Faso, employing Weibull’s law and the Arrhenius model to evaluate the impact of temperature fluctuations. A mathematical model was developed and implemented in Matlab/Simulink, with simulations conducted at 25°C to 40°C. This methodology allows for examining PV module durability and reliability under local conditions. The study results show that a 1°C rise in ambient temperature causes a 0.5% drop in PV module efficiency. Lifespan and average lifespan (MTTF) are reduced by around 1.8% for each additional degree and by 0.06% with each 1W/m² in solar irradiation. The failure probability density peaks after 7 years at 40°C and 11 years at 25°C, then decreases until it disappears after 20 years. Meanwhile, the failure rate continues to rise throughout the life of the PV module. These results highlight the importance of considering thermal conditions when using PV modules, as high temperature can adversely affect their long-term performance. To enhance the durability and reliability of these modules, limiting their exposure to heat is essential.

Keywords:
Reliability Photovoltaics temperature Weibull Arrhenius

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 9

References:

[1]  B. Alsayid et J. Jallad, «Modeling and simulation of photovoltaic cells/modules/arrays», Int J Res Rev Comput SciIJRRCS, vol. 2, no 6, 2011.
 
[2]  A. Acakpovi et E. B. Hagan, «Novel photovoltaic module modeling using Matlab/Simulink», Int. J. Comput. Appl., vol. 83, no 16, p. 27‑32, 2013.
 
[3]  A. Ndiaye, «Étude de la dégradation et de la fiabilité des modules photovoltaïques-Impact de la poussière sur les caractéristiques électriques de performance», PhD Thesis, Ecole Supérieure Polytechnique (ESP)-UCAD, 2013.
 
[4]  R. Laronde, «Fiabilité et durabilité d’un système complexe dédié aux énergies renouvelables-Application à un système photovoltaïque», PhD Thesis, Université d’Angers, 2011.
 
[5]  R. Laronde, A. Charki, et D. Bigaud, «Lifetime estimation of a photovoltaic module based on temperature measurement», Proc. 2nd IMEKO TC, vol. 11, 2011.
 
[6]  T. Mrabti, M. El Ouariachi, F. Yaden, K. Kassmi, et K. Kassmi, «Characterization and modeling of the electrical performance of the photovoltaic panels and systems», J. Electr. Eng. Theory Appl., vol. 1, no 2, p. 100‑110, 2010.
 
[7]  P. K. Dash et N. C. Gupta, «Effect of temperature on power output from different commercially available photovoltaic modules», Int. J. Eng. Res. Appl., vol. 5, no 1, p. 148‑151, 2015.
 
[8]  I. Tsuda, S. Igari, K. Nakahara, K. Takahisa, K. Morita, et H. Kato, «Long term reliability evaluation of PV module», in 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of, IEEE, 2003, p. 1960‑1963.
 
[9]  M. Vázquez et I. Rey-Stolle, «Photovoltaic module reliability model based on field degradation studies», Prog. Photovolt. Res. Appl., vol. 16, no 5, p. 419‑433, 2008.
 
[10]  R. Laronde, A. Charki, et D. Bigaud, « Reliability of photovoltaic modules based on climatic measurement data », Int. J. Metrol. Qual. Eng., vol. 1, no 1, p. 45‑49, 2010.
 
[11]  S. Voiculescu, F. Guerin, M. Barreau, et A. Charki, «Bayesian estimation in accelerated life testing», Int. J. Prod. Dev., vol. 7, no 3‑4, p. 246‑260, 2009.
 
[12]  A. Kabré, D. Bonkoungou, et Z. Koalaga, «Analysis of the Effect of Temperature and Relative Humidity on the Reliability of a Photovoltaic Module», Adv. Mater. Phys. Chem., vol. 14, no 8, Art. no 8, juill. 2024.
 
[13]  E. A. Nketiah, «Parameter estimation of the Weibull Distribution; Comparison of the Least-Squares Method and the Maximum Likelihood estimation», Int. J. Adv. Eng. Res. Sci., vol. 8, no 9, p. 210‑224, 2021.
 
[14]  O. Tebbi, « Estimation des lois de fiabilité en mécanique par les essais accélérés », PhD Thesis, Université d’Angers, 2005.
 
[15]  I. M. Mfetoum, S. N. Essiane, E. F. Kamanke, G. B. Ndzie, et S. Mbemmo, «Estimation des paramètres du modèle de WEIBULL: application à la modélisation de la fiabilité de l’entailleuse-perceuse mécanique de ballasts de chemin de fer de CAMRAIL», Sci. Technol. Dév. Ed. Spéc. Pp117-121, 2016.
 
[16]  R. Laronde, A. Charki, et D. Bigaud, «Lifetime estimation of a photovoltaic module subjected to corrosion due to damp heat testing», J. Sol. Energy Eng., vol. 135, no 2, p. 021010, 2013.
 
[17]  S. K. Yadav, N. M. Kumar, A. Ghosh, U. Bajpai, et S. S. Chopra, «Assessment of soiling impacts and cleaning frequencies of a rooftop BAPV system in composite climates of India», Sol. Energy, vol. 242, p. 119‑129, 2022.