American Journal of Energy Research
ISSN (Print): 2328-7349 ISSN (Online): 2328-7330 Website: https://www.sciepub.com/journal/ajer Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Energy Research. 2024, 12(2), 40-46
DOI: 10.12691/ajer-12-2-2
Open AccessArticle

Enhancing the Performance of Titanium Dioxide Compact Layer on Epitaxial Graphene and Fluorine Tin Oxide Heterojunctions

Nelson Mugambi1, , James Mbiyu Ngaruiya1 and Simon Waweru Mugo1

1Department of Physics, Jomo Kenyatta University of Agriculture and Technology Nairobi, Kenya

Pub. Date: June 20, 2024

Cite this paper:
Nelson Mugambi, James Mbiyu Ngaruiya and Simon Waweru Mugo. Enhancing the Performance of Titanium Dioxide Compact Layer on Epitaxial Graphene and Fluorine Tin Oxide Heterojunctions. American Journal of Energy Research. 2024; 12(2):40-46. doi: 10.12691/ajer-12-2-2

Abstract

We report a facile synthesis of Titanium dioxide (TiO2) modified compact layers on Fluorine Tin oxide (FTO) and graphene employing the Sol gel Doctor Blade technique, optimized systematically for enhanced solar energy conversion applications. UV-VIS spectrophotometer, a Varian 7000e FTIR, a Scanning Kelvin Probe Microscope, and Hall Effect setup evaluated the as deposited and films subjected to 1 step, 2°C/min and 1°C/min annealing rates. FTIR revealed considerable absorption at low frequencies (less than 798 cm-1) in TiO2 on graphene heterojunctions, confirming the occurrence of Ti-O and C-O-Ti bonds. The predominant anatase TiO2 characteristic was found at 438 cm-1. The TiO2 on graphene film annealed at 1 °C/min exhibited the lowest porosity (46%), as well as the highest dispersion energy (11.30 eV). As the annealing rates declined, so did the surface-to-volume energy loss ratio for all the annealed films. Graphene TiO2 annealed at 1 oC/min had a lower VELF/SELF than TiO2 on FTO, implying that an electron loses less energy when passing through the TiO2 on graphene layer than it does in TiO2 on FTO. The light absorption coefficient α and electron diffusion coefficient D of TiO2 on graphene improved to 4.637 x 103 and 1.485 x 10-4 (1 oC/min), respectively, whereas TiO2 on FTO values increased to 4.221 x 103 and 1.251 x 10-4 (1°C/min), in that order, with decreasing annealing rates. Higher values of TiO2 on graphene α and D indicate enhanced electron transition in the films. Hall Effect measurements on as-deposited and annealed TiO2 on graphene films demonstrated higher conductivity as annealing rates decreased, which was attributed to film recrystallization induced by calcination. Smoluchowski smoothing model, reveal surface scan average work functions (φ) and linear profile scan average work functions (φ) ensemble variations in granular tilts and surface slopes explaining geographic variation and distribution. Local fluctuations in φ triggered by the spatially varying concentrations of electric dipole moments are intrinsic to atomic steps and influence φ. TiO2 incorporation on graphene photoanode increased h+/e-separation, electron transport, and light absorption. The continuous conduction network on compact TiO2 nanoparticles acts as an electron leakage barrier, and the porous structure has a large specific surface area.

Keywords:
Graphene TiO2 Fluorine tin oxide Porosity electron transport

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 8

References:

[1]  Novoselov, K.S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V.V., Morozov, S.V., & Geim, A.K. (2005). “Two-dimensional atomic crystals”, Proceedings of the National Academy of Sciences of the United States of America, 102(30): 10451-10453.
 
[2]  Dervin, S., Dionysiou, D.D., Pillai, S.C. (2016). “2D nanostructures for water purification: graphene and beyond”, Nanoscale, 8:15115-15131.
 
[3]  Ganguly, P., Harb, M., Cao, Z., Cavallo, L., Breen, A., Dervin, S., Dionysiou, D.D., Pillai, S.C. (2019a). “2D nanomaterials for photocatalytic hydrogen production”, ACS Energy Letters 4 (7), 1687-1709.
 
[4]  Sauvage, F., Fonzo, F. D., Bassi, A. L., Casari, C. S., Russo, V., Divitini, G., .Ducati, C. E., Comte, P. & Gra¨tzel, M. (2010). “Hierarchical TiO2 Photoanode for Dye-Sensitized Solar Cells”, Nano Letters, 10 (7) 2562–2567.
 
[5]  Scanlon, D. O., Dunnill, C. W., Buckeridge, J., Shevlin, S. A., Logsdail, A. J., Woodley, S. M., Catlow, C. R., Powell, M. J., Palgrave, R. G., Parkin, I. P., Watson, G. W., Keal, T. W., Sherwood, P., Walsh, A., & Sokol, A. A. (2013). “Band alignment of rutile and anatase TiO₂”, Nature materials, 12(9), 798–801.
 
[6]  Cravanzola, S., Jain, S.M., Cesano, F., Damin, A., Scarano, D. (2015). “Development of a multifunctional TiO2/MWCNT hybrid composite grafted on a stainless steel grating”, RSC Advances, 5: 103255–103264.”
 
[7]  Zhu, J., Cao, Y., & He, J. (2014). Facile fabrication of transparent, broadband photoresponse, self-cleaning multifunctional graphene-TiO2 hybrid films”, Journal of colloid and interface science, 420, 119–126.
 
[8]  Amiri, A., Shanbedi, M., Ahmadi, G., Eshghi, H., Kazi, S. N., Chew, B. T., Savari, M., & Zubir, M. N. (2016). “Mass production of highly porous graphene for high-performance supercapacitors”, Scientific reports, 6: 32686.
 
[9]  Rahimi, R, Zargari, S., & Sadat Shojaei, Z. (2014). “Photoelectrochemical investigation of TiO2-graphene nanocomposites”, .In Proceedings of the 18th International Electronic Conference on Synthetic Organic Chemistry, Basel, Switzerland, 1–30.
 
[10]  Morrow, B. A., & Beauchamp, Y. B. A., (1971). “Infrared Spectra of Some Alkyl Platinum Compounds. Part II. Assignment of the CH Stretching Modes of a Methyl Group”, Canadian Journal of Chemistry, 49(18): 2921-2925.
 
[11]  Werner F., (2017). “Hall measurements on low-mobility thin films”, Journal of Applied Physics, 122(13):135306.
 
[12]  Schroder, D. K. (2006). “Semiconductor Material and Device Characterization”, John Wiley & Sons, 800.
 
[13]  Han, L., Kiode, N., Chiba, Y., and Mitate, T. (2004). “Modeling of an equivalent circuit for dye sensitized solar cells”, Applied Physics Letters, 84 (13), 2433-2435
 
[14]  Chen L., Hsu C., Chan P., Zhang X. & Huang C. (2014). “Improving the performance of dye-sensitized solar cells with TiO2/graphene/ TiO2 sandwich structure”, Nanoscale Research Letters, 9: 380 -389.
 
[15]  Smestad, G. P., Spiekermann, S., Kowalik, J., Grant, C. D., Schwartzberg, A. M. Zhang, J., Tolbert, L. M., Moons, E. (2003). “A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices”, Solar Energy Materials & Solar Cells 76: 85–105.
 
[16]  Li, B., Wang, L., Kang, B., Wang, P. and Qiu, Y. (2006). “Review of Recent Progress in Solid-State Dye-Sensitized Solar Cells”, Solar Energy Materials and Solar Cells, 90: 549-573.
 
[17]  Hasan, M. M., Haseeb, A. S. M. A., Saidur, R., Masjuki, H. H. and Hamdi. M. (2009). "Synthesis and Annealing of Nanostructured TiO2 Films by Radio-Frequency Magnetron Sputtering", Journal of Applied Sciences, 9: 2815-2821.
 
[18]  Frederichi, D., Scaliante, M. H. N. O., and Bergamasco, R. (2021). “Structured photocatalytic systems: photocatalytic coatings on low-cost structures for treatment of water contaminated with micro pollutants—a short review,” Environmental Science and Pollution Research, 28(19), 23610-23633.
 
[19]  Ngei K. (2016). “Characterization And Performance Evaluation Of Graphene Films As Counter Electrodes For Dye Sensitized Solar Cells”. Unpublished Thesis, Juja: JKUAT.
 
[20]  Benjamin M. J., Simon W. M., and James M. N. (2018) “Effect of Annealing Rates on Surface Roughness of TiO2 Thin films.” Journal of Materials Physics and Chemistry, 6, (2): 43-46
 
[21]  Hardinger, S. (2008), Organic Molecular Structures and Interactions. University of California, 47: 223-226.
 
[22]  Maira, A. J., Coronado, J. M., Augugliaro, V., Yeung, K. L., Conesa, J. C., Soria, J, & Catal,. J. (2001). “Fourier Transform Infrared Study of the Performance of Nanostructured TiO2 Particles for the Photocatalytic Oxidation of Gaseous Toluene”, Journal of Catalysis, 202: 413-420.
 
[23]  Kumar, B., Smita, K., Cumbal, L., Debut, A., Camacho, J., Hernández-Gallegos, E., Chávez-López, M. G., Grijalva, M., Angulo, Y., Rosero, G. Y. A. & Gustavo, R. (2015), “Pomosynthesis and biological activity of silver nanoparticles using Passiflora tripartitafruit extracts [J]”, Advanced Materials Letters, 6(2): 127−132.
 
[24]  Behera, M. and Ram, S. (2012). “Synthesis and characterization of core-shell gold nanoparticles with poly (vinyl pyrrolidone) from a new precursor salt”, Applied Nanoscience, 3: 83–87.
 
[25]  Gao, Y., Masuda, Y., Peng, Z., Yonezawa, T. & Koumoto, K. (2003). “Room Temperature Deposition of TiO2 Thin Films from Aqueous Peroxotitanate Solution”, Journal of Materials Chemistry, 13: 608-613.
 
[26]  Gonzalez R. J., Zallen R. and Berger, H. (1997). “Infrared reflectivity and lattice fundamentals in anatase TiO2”, Physical Review B. 55: 7014 - 7017.
 
[27]  Xu, Y. & Shen, M. (2008). ‘Fabrication of anatase-type TiO2 films by reactive pulsed laser deposition for photocatalyst application’, Journal of Materials Processing Technology, 202 (1–3): 301–306.
 
[28]  Pan, X., Zhao, Y., Liu, S., Korzeniewski, C. L., Wang, S., & Fan, Z. (2012). “Comparing graphene-TiO₂ nanowire and graphene-TiO₂ nanoparticle composite photocatalysts”, ACS applied materials & interfaces, 4(8), 3944–3950.
 
[29]  Tauc, J., Grigorovici, R., & Vancu, A. (1966). “Optical properties and electronic structure of amorphous germanium”, Physica Status Solidi, 15, 627-637.
 
[30]  Gould, M., & Lamont, C. (2010). “Examination of the optical band gap of various semiconducting materials”, Reed College, Portland, OR 97202.
 
[31]  Illican, S., Caglar, Y., & Caglar, M. (2008). “Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. Journal of Optoelectronics and Advanced Materials. 10(10), 2578-2583.
 
[32]  Ye, Q., Liu, P. Y., Tang, Z. F., & Zhai, L. (2007). “Hydrophilic Properties of Nano-TiO2 Thin Films Deposited by RF Magnetron Sputtering,” Vacuum, 81(8), 627–631.
 
[33]  Liu, J., Gan, D., Hu, C., Kiene, M., & Paul S. H. (2002). Porosity effect on the dielectric constant and thermomechanical properties of organosilicate films,” Applied Physics Letters, 81 (22), 4180.
 
[34]  Wemple S. H. & DiDomenico M. (1969) “Oxygen‐Octahedra Ferroelectrics. II. Electro‐optical and Nonlinear‐Optical Device Applications,” Journal of Applied Physics, 40: 735.
 
[35]  Wemple S. H. & DiDomenico M. (1971) “Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials,” Physical Review B, 3: 1338–51.
 
[36]  Rothenberger, G., Fitzmaurice, D. & Gratzel, M. (1992). “Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films”, Journal of Physical Chemistry, 96 (14), 5983–5986.
 
[37]  Ferber; J., & Luther, J. (2001). “Modeling of Photovoltage and Photocurrent in Dye-Sensitized Titanium Dioxide Solar Cells”, Journal of Physics and chemistry B. 105: (21), 4895–4903.
 
[38]  Bouvard, D. & Lange, F. F. (1992). “Correlation between random dense parking and random dense packing for determining particle coordination number in binary systems,” Physical review A, 45 (8), 5690 – 5693.
 
[39]  Kingerly; N. D. & Berg, M (1955), “Study of the Initial Stages of Sintering Solids by Viscous Flow, Evaporation‐Condensation, and Self‐Diffusion”, Journal of applied Physics 26, 1205-1212.
 
[40]  Nolan, G. T. & Kavanagh, P. E. (1992). “Computer simulation of random packing of hard spheres”, Powder technology, 72 (2): 149-155R.
 
[41]  Gomez; R. & Salvador, P. (2005)”. Photovoltage dependence on film thickness and type of illumination in nanoporous thin film electrodes according to a simple diffusion model”, Solar Energy Materials and Solar Cells. 88(4): 377-388.
 
[42]  Lee, J. J., Coia, G. M. & Lewis, N. S. (2004). “Current Density versus Potential Characteristics of Dye-Sensitized Nanostructured Semiconductor Photoelectrodes. 2. Simulations”, Journal of Physics and Chemistry B, 108 (17), 5282–5293.
 
[43]  Yang C., Fan H., Xi Y., Chen J. & Li Z. (2008). “Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation”, Applied Surface Science, 254: 2685-2689.
 
[44]  Zerweck, U., Loppacher, C., Otto, T., Grafström, S., & Eng, L. M. (2005). “Accuracy and resolution limits of Kelvin probe force microscopy”, Physical Review B, 71(12), 125424.
 
[45]  .Meng, N., Michael, K. H. L., Dennis Y.C., & Leung, K. S. (2005). “An analytical study of the porosity effect on dye- sensitized solar cell performance,” Solar Energy Materials and Solar Cells, 90, 1331–1344.
 
[46]  Hall, E. (1879). "On a New Action of the Magnet on Electrical Current," American Journal of Mathematics, 2: 287-292.
 
[47]  Benkstein; K. D., Kopidakis, N., Van de Lagemaat, J. & Frank, A. J. (2003), “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells”, Journal of Physics and Chemistry B, 107 (31), 7759–7767.