American Journal of Cardiovascular Disease Research
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: https://www.sciepub.com/journal/ajcdr Editor-in-chief: Dario Galante
Open Access
Journal Browser
Go
American Journal of Cardiovascular Disease Research. 2022, 8(1), 1-28
DOI: 10.12691/ajcdr-8-1-1
Open AccessReview Article

Shifting Paradigm from Conventional 2D to 3D-Delayed Gadolinium Enhancement Whole Heart MRI: Implications, Technical Aspects, Applications & Planning

Bourne S.1, , Rivard A.1, Schieman K.1 and Sherif A.1

1Imaging Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates

Pub. Date: February 23, 2022

Cite this paper:
Bourne S., Rivard A., Schieman K. and Sherif A.. Shifting Paradigm from Conventional 2D to 3D-Delayed Gadolinium Enhancement Whole Heart MRI: Implications, Technical Aspects, Applications & Planning. American Journal of Cardiovascular Disease Research. 2022; 8(1):1-28. doi: 10.12691/ajcdr-8-1-1

Abstract

Three dimensional (3D) delayed gadolinium enhancement cardiac magnetic resonance imaging, includes advantages such as: high resolution entire heart coverage without slice–misregistration, shorter or no breath-holds, multi-planes post reconstruction and higher signal to noise ratio (SNR). These are among some of the reasons why it has gained significant popularity within the daily clinical practice; however, parallel imaging, inefficiencies in navigator echoes and prolonged scan times are some of the challenges affecting overall quality of 3D cardiac imaging [1].

Keywords:
standard 2D-DGE cardiac and respiratory motion correction 3D-DGE protocol optimization

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 44

References:

[1]  Toupin, S., Pezel, T., Bustin, A. and Cochet, H., “Whole-Heart High-Resolution Late Gadolinium Enhancement: Techniques and Clinical Applications. Journal of Magnetic Resonance Imaging,” 2021.
 
[2]  Kellman, P. and Arai, A.E., “Cardiac imaging techniques for physicians: late enhancement.” Journal of magnetic resonance imaging, 36(3), pp.529-542, 2012.
 
[3]  Donald, W.M., Elizabeth, A.M., Martin, R.P. and Martin, R.P. (2003). MRI from picture to proton.
 
[4]  Juan, L.J., Crean, A.M. and Wintersperger, B.J., “Late gadolinium enhancement imaging in assessment of myocardial viability: techniques and clinical applications,” Radiologic Clinics, 53(2), pp.397-411, 2015.
 
[5]  Bratis, K., Henningsson, M., Grigoratos, C., Dell’Omodarme, M., Chasapides, K., Botnar, R. and Nagel, E., “Image-navigated 3-dimensional late gadolinium enhancement cardiovascular magnetic resonance imaging: feasibility and initial clinical results,” Journal of Cardiovascular Magnetic Resonance, 19(1), pp. 1-9, 2017.
 
[6]  Bizino, M.B., Tao, Q., Amersfoort, J., Siebelink, H.M.J., van den Bogaard, P.J., van der Geest, R.J. and Lamb, H.J., “High spatial resolution free-breathing 3D late gadolinium enhancement cardiac magnetic resonance imaging in ischaemic and non-ischaemic cardiomyopathy: quantitative assessment of scar mass and image quality,” European radiology, 28(9), pp.4027-4035, 2018.
 
[7]  Ferreira, P.F., Gatehouse, P.D., Mohiaddin, R.H. and Firmin, D.N., “Cardiovascular magnetic resonance artefacts,” Journal of Cardiovascular Magnetic Resonance, 15(1), pp.1-39, 2021.
 
[8]  Jablonowski, R., Nordlund, D., Kanski, M., Ubachs, J., Koul, S., Heiberg, E., Engblom, H., Erlinge, D., Arheden, H. and Carlsson, M., “Infarct quantification using 3D inversion recovery and 2D phase sensitive inversion recovery; validation in patients and ex vivo,” BMC cardiovascular disorders, 13(1), pp.1-8, 2013.
 
[9]  Syed, M.A., Raman, S.V. and Simonetti, O.P. eds., Basic Principles of Cardiovascular MRI: Physics and Imaging Techniques. Springer, 2015.
 
[10]  Magnetom Flash (2021). SCMR edition 2021. Available: siemens-healthineers.com/magnetom-world. [Accessed: 13 August 2021].
 
[11]  Puntmann, V. (2015). Introduction into LGE, 2015. Available: https://www.youtube.com/watch?v=W2foZI9isQE. [Accessed on: 21 July 2021].
 
[12]  Wu, K.C., “CMR of microvascular obstruction and hemorrhage in myocardial infarction,” Journal of Cardiovascular Magnetic Resonance, 14(1), pp.1-16, 2012.
 
[13]  van Heeswijk, R.B., Bonanno, G., Coppo, S., Coristine, A., Kober, T. and Stuber, M., “Motion compensation strategies in magnetic resonance imaging,” Critical Reviews™ in Biomedical Engineering, 40(2), 2012.
 
[14]  Bansal M, Kasliwal RR., “How do I do it? speckle-tracking echocardiography,” Indian Heart Journal. Jan-Feb; 65(1): 117-123, 2013.
 
[15]  Ferrari, V., The EACVI textbook of cardiovascular magnetic resonance. Oxford University Press, 2018.
 
[16]  Biopac (2021) Biopac systems inc. Available: www.biopac.com. [Accessed: 21 August 2021].
 
[17]  University of California San Diego (2021) “Cardiovascular imaging lab: cardiac cycle,” Available: http://cvil.ucsd.edu/wp-content/uploads/2017/02/cardiac-cycle.pdf). [Accessed: 21 July 2021].
 
[18]  Thoracic Key (2021) Thoracic key: principles of ECG gating for CMR. Available: https://thoracickey.com/. [Accessed: 21 July 2021].
 
[19]  Malmivuo, J. and Plonsey, R. (1995) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA.
 
[20]  Biglands, J.D., Radjenovic, A. and Ridgway, J.P., “Cardiovascular magnetic resonance physics for clinicians: Part II.” Journal of Cardiovascular Magnetic Resonance, 14(1), pp.1-40, 2012.
 
[21]  Turkbey, E.B., Nacif, M.S., Noureldin, R.A., Sibley, C.T., Liu, S., Lima, J.A.C. and Bluemke, D.A., “Differentiation of myocardial scar from potential pitfalls and artefacts in delayed enhancement MRI,” The British Journal of Radiology, 85(1019), pp.e1145-e1154, 2012.
 
[22]  Niendorf, T., Winter, L. and Frauenrath, T., “Electrocardiogram in an MRI environment: clinical needs, practical considerations, safety implications, technical solutions and future directions.” In Advances in electrocardiograms-methods and analysis (pp. 309-324). InTech. 2012.
 
[23]  Mihai, G. (2017). The fundamentals of cardiovascular magnetic resonance. Available: https://radiologykey.com/the-fundamentals-of-cardiovascular-magnetic-resonance/). [Accessed: 10 August 2021].
 
[24]  Elster, A.D. (2021). Cardiac Gating Parameters. Available: https://www.mriquestions.com/gating-parameters.html. [Accessed: 10 August 2021].
 
[25]  Elster, A.D. (2021). Cardiac-cine motion studies. Available: https://www.mriquestions.com/beating-heart-movies.html. [Accessed: 10 August 2021].
 
[26]  Shrack, T., (2018). MRI for technologists. Available: https://www.icpme.us/courses/mri_pfsMRI/4712-301%20Cardiac%20MRI.pdf. [Accessed: 10 August 2021].
 
[27]  Hamlet, S.M. (2017). Properties and Optimization of Respiratory Navigator Gating for Spiral Cine Dense Cardiac MRI. University of Kentucky.
 
[28]  Scott, A.D., Keegan, J. and Firmin, D.N. (2009). Motion in cardiovascular MR imaging. Radiology, 250(2), pp.331-351.
 
[29]  Plein, S., Greenwood, J. and Ridgway, J.P. (2015) Cardiovascular MR manual. London: Springer.
 
[30]  Henningsson, M. and Botnar, R.M., “Advanced respiratory motion compensation for coronary MR angiography,” Sensors, 13(6), pp.6882-6899. 2013.
 
[31]  Stuber, M. (2017). The new comprehensive cardiac MRI exam. Available: www.youtube.com/watch?v=IXb3Rqca51A. [Accessed: 10 August 2021].
 
[32]  Monney, P., Piccini, D., Berchier, G., Rutz, T., Vincenti, G., Prša, M., Sekarski, N., Stuber, M. and Schwitter, J., “Self-Navigated Free-Breathing High-Resolution 3D Cardiac Imaging: A New Sequence for Assessing Cardiovascular Congenital Malformations,” Clinical Cardiovascular Imaging (2015).
 
[33]  Stuber, M. (2015). 5th annual TMII symposium- 2015-session III- cardiovascular imaging. Available: https://www.youtube.com/watch?v=lWWiZPsVnKY. [Accessed: 10 August 2021].
 
[34]  Zeilinger, M.G., Wiesmüller, M., Forman, C., Schmidt, M., Munoz, C., Piccini, D., Kunze, K.P., Neji, R., Botnar, R.M., Prieto, C. and Uder, M., “3D Dixon water-fat LGE imaging with image navigator and compressed sensing in cardiac MRI.” European Radiology, 31(6), pp.3951-3961, 2021.
 
[35]  Bratis, K., Henningsson, M., Grigoratos, C., Dell’Omodarme, M., Chasapides, K., Botnar, R. and Nagel, E. “Image-navigated 3-dimensional late gadolinium enhancement cardiovascular magnetic resonance imaging: feasibility and initial clinical results,” Journal of Cardiovascular Magnetic Resonance, 19(1), pp.1-9, 2017.
 
[36]  Wildgruber, M., Settles, M., Kosanke, K., Bielicki, I., Ntziachristos, V., Rummeny, E.J., Botnar, R.M. and Huber, A.M., “Evaluation of phase-sensitive versus magnitude reconstructed inversion recovery imaging for the assessment of myocardial infarction in mice with a clinical magnetic resonance scanner.” Journal of Magnetic Resonance Imaging, 36(6), pp.1372-1382, 2012.
 
[37]  Bourne, S., and Massis, M. (2021). Effect of TI time on contrast myocardium for 3D Turbo Flash Inversion Recovery DGE.
 
[38]  Carr, J. (2021). Current insights into cardiac magnetic resonance imaging.
 
[39]  Holtackers, R.J., Chiribiri, A., Schneider, T., Higgins, D.M. and Botnar, R.M., “Dark-blood late gadolinium enhancement without additional magnetization preparation,” Journal of Cardiovascular Magnetic Resonance, 19(1), pp.1-10. 2017.
 
[40]  Kellman, P., Xue, H., Olivieri, L.J., Cross, R.R., Grant, E.K., Fontana, M., Ugander, M., Moon, J.C. and Hansen, M.S., “Dark blood late enhancement imaging,” Journal of Cardiovascular Magnetic Resonance, 18(1), pp.1-11. 2017.
 
[41]  Saranathan, M., Rochitte, C.E. and Foo, T.K., “Fast, three-dimensional free-breathing MR imaging of myocardial infarction: a feasibility study,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 51(5), pp.1055-1060. 2004.
 
[42]  Matsumoto, H., Matsuda, T., Miyamoto, K., Shimada, T., Hayashi, A., Mikuri, M. and Hiraoka, Y., “Late gadolinium-enhanced cardiovascular MRI at end-systole: feasibility study.” American Journal of Roentgenology, 195(5), pp.1088-1094, 2010.