[1] | Birnbaum, Z. W. (1956). ’On a use of Mann-Whitney statistics’. Proceeding Third Berkley Symposium on Mathematical Statistics and Probability, 1, 13-17. |
|
[2] | Birnbaum, Z. W. and McCarty, B.C. (1958). ‘A distribution-free upper confidence bounds for Pr(Y < X) based on independent samples of X and Y’. The Annals of Mathematical Statistics, 29(2), 558-562. |
|
[3] | Raqab, M. Z., Madi, M. T. and Kundu, D (2008). Estimation of P(Y < X) for the 3-parameter generalized exponential distribution. Communications in Statistics-Theory and Methods, 37(18), 2854-2864. |
|
[4] | Wong, A. (2012). Interval estimation of P(Y < X) for generalized Pareto distribution. Journal of Statistical Planning and Inference, 142, 601-607. |
|
[5] | Angali, K. A, Latifi S. M, Hanagal, D. D. (2014). Bayesian estimation of bivariate exponential distributions based on LINEX and Quadratic loss functions: a survival approach with censored samples. Communications in Statistics-Theory and Methods, 43(1), 31-44. |
|
[6] | Bhattacharyya, G. K. and Johnson, R. A. (1974). Estimation of reliability in multicomponent stress-strength model. Journal of American Statistical Association, 69, 966-970. |
|
[7] | W. Kuo and M. J. Zuo. (2003). Optimal Reliability Modeling, Principles and Applications. New York, NY, USA: Wiley. |
|
[8] | G. S. Rao and R.R.L. Kantam. (2010). Estimation of reliability in multicomponent stress-strength model: Log-logistic distribution. Electronic Journal of Applied Statistical Analysis, 3(2), 75-84. |
|
[9] | G. S. Rao. (2012). Estimation of reliability in multicomponent stress-strength model based on generalized exponential distribution. Colombian Journal of statistics, 35(1), 67-76. |
|
[10] | G. S. Rao. (2012). Estimation of reliability in multicomponent stress-strength model based on Rayleigh distribution. Probability Statistics forum, 5, 150-161. |
|
[11] | G. S. Rao (2014). Estimation of reliability in multicomponent stress-strength model based on generalized Rayleigh distribution. Journal of Modern Applied Statistical Methods, 13(1), 367-379. |
|
[12] | G. S. Rao, R. R. L. Kantam, K. Rosaiah, and J. P. Reddy (2013). Estimation of reliability in multicomponent stress-strength model based on inverse Rayleigh distribution. Journal of Statistics and Applied Probability, 3, 261-267. |
|
[13] | G. S. Rao, Aslam, M and Kundu, D (2015). Burr Type XII distribution parametric estimation and estimation of reliability in multicomponent stress-strength. Communications in Statistics-Theory and Methods, 44(23), 4953-4961. |
|
[14] | Pandit, P. V and Kantu, Kala, J (2013). System reliability estimation in multicomponent exponential stress-strength models. International Journal of Reliability and Applications, 14(2), 97-105. |
|
[15] | Nadar, M. and Kizilaslan, F. (2015). ‘Classical and Bayesian estimation of Reliability in Multicomponent Stress-Strength Model based on Weibull distribution’, Revista Clombiana de Estadistica, 38(2), 467-484. |
|
[16] | S. Rezaei, R. Tahmasbi and M. Mahmoodi (2010). Estimation of Pr(X > Y) for generalized Pareto distribution. Journal of Statistical Planning and Inference, 140, 480-494. |
|
[17] | G. A. McIntyre (1952). A method for unbiased selective sampling using ranked sets. Australian Journal of Agricultural Research, 3, 385-390. |
|
[18] | Kvam, P. H, Samaniego, F, J. (1993). On maximum likelihood estimation based on ranked set sampling with application to reliability. In Basu: A., ed, Advanced in Reliability. Amsterdam: North- Holland, 215-229. |
|
[19] | Kvam, P. H, Samaniego, F, J. (1994). Nonparametric maximum likelihood estimation based on ranked set sampling. American Journal of statistical Association, 89, 526-537. |
|
[20] | Abu-Dayyeh, W. A., Muttlak, H. A. (1996). Using ranked set sampling for testing hypothesis on the scale parameter for exponential and uniform distribution. Pakistan Journal of statistics, 12, 131-138. |
|
[21] | H. A. Muttlak (1997). Median ranked set sampling. Journal of Applied Statistical Science, 6, 245-255. |
|
[22] | Yu, P. L. H., Lam. K (1997). Regression estimator in ranked set sampling. Biometrics, 53, 1070-1081. |
|
[23] | S. Sengupta and S. Mukhuti (2008). Unbiased estimation of Pr(X > Y) using ranked set sample data. Statistics, 42, 223-230. |
|
[24] | H. A. Muttlak, W. A. Abu-Dayyah, M. F. Saleh, and E. Al-Sawi (2010). Estimating P(Y < X) using ranked set sampling in case of the exponential distribution. Communications in Statistics: Theory and Methods, 39, 1855-1868. |
|
[25] | M. A. Hussian (2014). Estimation of stress-strength model for generalized inverted exponential distribution using ranked set sampling. International Journal of Advance in Engineering and Technology, 6, 2354-2362. |
|
[26] | A. S. Hassan, S. M. Assar, and M. Yahya (2015). Estimation of P(Y < X) for Burr distribution under several Modifications for ranked set sampling. Australian Journal of Basic and Applied Sciences, 9(1), 124-140. |
|
[27] | D. V. Lindley (1980). Approximate Bayes method. Trabajos de Estadistica, 3, 281-288. |
|
[28] | Badar, M. G. & Priest, A. M. (1982). Statistical aspects of fibre and bundle strength in hybrid composites. In T. Hayashi, K. Kawata, and S. Umekawa (eds.), Progress in Science and Engineering Composites, (pp. 1129-1136). Tokyo: ICCM-IV. |
|