[1] | Ablowitz, M.J. & Clarkson, P.A. 1991. Solitons, nonlinear evolution equations and inverse scattering transform. Press, . |
|
[2] | Wang, M.L., Zhou, Y.B. & Li, Z.B. 1996. Application of homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Pyss. Lett. A 216: 67-75. |
|
[3] | Yan, Z. & Zhang, H.Q. 2001. New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water. Phy. Lett. A 285: 355-362. |
|
[4] | Naher, H., Abdullah, F. A., & Mohyud-Din, S. T. (2013). Extended generalized Riccati equation mapping method for the fifth-order Sawada-Kotera equation. AIP Advances, 3(5), 052104. |
|
[5] | Naher, H., & Abdullah, F. A. (2012). New Traveling Wave Solutions by the Extended Generalized Riccati Equation Mapping Method of the-Dimensional Evolution Equation. Journal of Applied Mathematics, 2012. |
|
[6] | Naher, H., & Abdullah, F. A. (2012). The modified Benjamin-Bona-Mahony equation via the extended generalized Riccati equation mapping method. Applied Mathematical Sciences, 6(111), 5495-5512. |
|
[7] | Wang, M.L. & Li, X.Z. 2005. Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos, Solitons and Fractals, 24: 1257-1268. |
|
[8] | Malfliet, W. 1992. Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60: 650-654. |
|
[9] | He, J.H. & Wu, X.H. 2006. Exp-function method for nonlinear wave equations. Chaos Solitons and Fractals. 30: 700-708. |
|
[10] | Naher, H., Abdullah, F.A. & Akbar, M.A. 2011. The exp-function method for new exact solutions of the nonlinear partial differential equations. International Journal of the Physical Sciences. 6(29): 6706-6716. |
|
[11] | Naher, H., Abdullah, F.A. & Akbar, M.A. 2012. New traveling wave solutions of the higher dimensional nonlinear partial differential equation by the Exp-function method. Journal of Applied Mathematics. Article ID: 575387, 14 pages. |
|
[12] | Maurya, V.N., Gandel, Y. V., Dushkin, V.D. 2014. The Approximate Method for Solving the Boundary Integral Equations of the Problem of Wave Scattering by Superconducting Lattice. American Journal of Applied Mathematics and Statistics, 2 (6A): 13-19. |
|
[13] | Daga, A., Pradhan, V. 2014. Variational Homotopy Perturbation Method for the Nonlinear Generalized Regularized Long Wave Equation. American Journal of Applied Mathematics and Statistics, 2 (4): 231-234. |
|
[14] | Patel, K. K., Mehta, M. N., Singh, T. R. 2014. Application of Homotopy Analysis Method in One-Dimensional Instability Phenomenon Arising in Inclined Porous Media. American Journal of Applied Mathematics and Statistics, 2 (3): 106-114. |
|
[15] | Wang, M., Li, X. & Zhang, J. 2008. The (G’/G)--expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A 372: 417-423. |
|
[16] | Feng, J., Li, W. & Wan, Q. 2011. Using (G’/G)-expansion method to seek traveling wave solution of Kolmogorov-Petrovskii-Piskunov equation. Applied Mathematics and Computation 217: 5860-5865. |
|
[17] | Naher, H., Abdullah, F.A. & Akbar, M.A. 2011. The (G’/G) -expansion method for abundant traveling wave solutions of Caudrey-Dodd-Gibbon equation. Mathematical Problems in Engineering. Article ID: 218216 11 pages. |
|
[18] | Naher, H., & Abdullah, F. A. (2012). The Basic (G'/G) -expansion method for the fourth order Boussinesq equation. Applied Mathematics, 3(10). |
|
[19] | Zhang, J., Jiang, F. & Zhao, X. 2010. An improved (G’/G) -expansion method for solving nonlinear evolution equations, International Journal of Computer Mathematics, 87(8): 1716-1725. |
|
[20] | Hamad, Y.S., Sayed, M., Elagan, S.K. & El-Zahar, E.R. 2011. The improved (G’/G) -expansion method for solving (3+1)-dimensional potential-YTSF equation, Journal of Modern Methods in Numerical Mathematics 2(1-2): 32-38. |
|
[21] | Nofel, T.A., Sayed, M. Hamad, Y.S & Elagan, S.K. 2011. The improved (G’/G) -expansion method for solving the fifth-order KdV equation, Annals of Fuzzy Mathematics and Informatics 3(1): 9-17. |
|
[22] | Naher, H., Abdullah, F. A., & Bekir, A. (2012). Abundant traveling wave solutions of the compound KdV-Burgers equation via the improved (G′/G)-expansion method. AIP Advances, 2(4), 042163. |
|
[23] | Naher, H. & Abdullah, F.A. 2012. Some new traveling wave solutions of the nonlinear reaction diffusion equation by using the improved (G’/G) -expansion method. Mathematical Problems in Engineering. Article ID: 871724, 17 pages. |
|
[24] | Naher, H. & Abdullah, F.A. 2012. The improved (G’/G) -expansion method for the (2+1)-dimensional Modified Zakharov-Kuznetsov equation. Journal of Applied Mathematics, Article ID: 438928, 20 pages. |
|
[25] | Naher, H., Abdullah, F. A. 2014. The improved (G'/G)-expansion method to the (2+1)-dimensional breaking soliton equation. Journal of Computational Analysis & Applications, 16(2), 220-235. |
|
[26] | Naher, H., Abdullah, F. A., Rashid, A. 2014. Some New Solutions of the (3+1)-dimensional Jimbo-Miwa equation via the Improved (G'/G)-expansion method. Journal of Computational Analysis & Applications, 17(2) 287-296. |
|
[27] | Naher, H., Abdullah, F. A. 2013. The Improved (G’/G)-expansion method to the (3+1)-dimensional Kadomstev-Petviashvili equation. American Journal of Applied Mathematics and Statistics, 1 (4) 64-70. |
|
[28] | Camassa, R. & Holm, D. 1993. An integrable shallow water equation with peaked solitons. Physical Review Letters 71(11): 1661-1664. |
|
[29] | Tian, L. & Song, X. 2004. New peaked solitary wave solutions of the generalized Camassa-Holm equation. Chaos Solitons and Fractals 19: 621-637. |
|
[30] | Wazwaz, A.M. 2005. New compact and noncompact solutions for variants of a modified Camassa-Holm equation. Applied Mathematics and Computation 163(3): 1165-1179. |
|
[31] | Lenells, J. 2005. Traveling wave solutions of the Camassa-Holm equation, J. Diff. Eq. 217: 393-430. |
|
[32] | Liu, X., Tian, L. & Wu, Y. 2010. Application of (G’/G) -expansion method to two nonlinear evolution equations. Applied Mathematics and Computation 217: 1376-1384. |
|