[1] | R. Bellman, and K. L. Cooke, Differential-Difference Equations. Academic Press, New York, 1963. |
|
[2] | R. D. Driver, Ordinary and Delay Differential Equations, , 1977. |
|
[3] | K. Denevers and K. Schmit, “An application of the shooting method to boundary value problems for second-order delay equations”, J. Math. Anal. Appl., 36 (1971) 588-597. |
|
[4] | G. B. Gustafson and K. Schmitt, “Nonzero solutions of boundary value problems for second order ordinary and delay differential equations”, J. Differential Equations, 12 (1972) 129-147. |
|
[5] | R.B. Stein, “A theoretical analysis of neuronal variability”, Biophys. J. 5 (1965) 173-194. |
|
[6] | H. C. Tuckwell and W. Richter, “Neuronal inter-spike time distributions and the estimation of neuro-physiological and neuro-anatomical parameters”, J. Theor. Biol., 71 (1978) 167-183. |
|
[7] | H. C. Tuckwell and D. K.Cope, “Accuracy of neuronal inter-spike times calculated from a diffusion approximation”, J. Theor. Biol., 83 (1980) 377-387. |
|
[8] | W. J. Wilbur and J. Rinzel, “An analysis of Stein's model for stochastic neuronal excitation”, Biol. Cybern., 45 (1982) 107-114. |
|
[9] | C.G. Lange R.M. Miura, “Singular perturbation analysis of boundary-value problems for differential difference equations”, SIAM J. Appl. Math., 42 (1982) 502-531. |
|
[10] | C.G. Lange R.M. Miura, “Singular perturbation analysis of boundary-value problems for differential-difference equations. V. Small shifts with layer behaviour”, SIAM J. Appl. Math., 54 (1994) 249-272. |
|
[11] | C.G. Lange R.M. Miura, “Singular perturbation analysis of boundary-value problems for differential-difference equations. VI. Small shifts with rapid oscillations”, SIAM J. Appl. Math., 54 (1994) 273-283. |
|
[12] | M. K. Kadalbajoo and K. K. Sharma, “Numerical analysis of boundary-value problems for singularly perturbed differential-difference equations with small shifts of mixed type”, J. Optim. Theory Appl., 115 (1) (2002) 145-163. |
|
[13] | M. K. Kadalbajoo and K. K. Sharma, “Numerical treatment of a mathematical model arising from a model of neuronal variability”, J. Math. Anal. Appl., 307 (2005) 606-627. |
|
[14] | L. E. El’sgolts and S. B. Norkin, Introduction to the Theory and Applications of Differential Equations with Deviating Arguments, Academic Press, , 1973. |
|
[15] | R. K. Mohanty and N. Jha, “A class of variable mesh spline in compression methods for singularly perturbed two point singular boundary value problems”, Applied Mathematics and Computation, 168 (2005) 704-716. |
|