[1] | Bader, D., & Pennington, R. (2001). Cluster computing: Applications. The International Journal of High Performance Computing, 15 (2), 181-185. |
|
[2] | Barnard, G. A. (1963). Discussion of ‘‘The spectral analysis of point processes’’ by M. S. Bartlett. Journal of the royal statistical society, B, 25, 264-96. |
|
[3] | Diggle, P. (1990). Time Series: A Biostatistical Introduction. Oxford. |
|
[4] | Dufour, J.-M., & Khalaf, L. (2001). Monte-Carlo test methods in econometrics. In companion to theoretical econometrics (eds B. Baltagi). Oxford:Blackwell. |
|
[5] | Hsiao, Y., & Stewart, R. D. (2008). Monte Carlo simulation of DNA damage induction by x-rays and selected radioisotopes. Physics in medicine and biology, 53 (1), 233-244. |
|
[6] | Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24 (11), 1403-1405. |
|
[7] | Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics, 27 (21), 3070-3071. |
|
[8] | Knaus, J. (2010, 03 04). Developing parallel programs using snowfall. Retrieved from CRAN : cran.r-project.org/web/packages/snowfall/vignettes/snowfall.pdf |
|
[9] | Knaus, J., Porzelius, C., Binder, H., & Schwarzer, G. (2009). Easier parallel computing in R with snowfall and sfCluster. The R Journal, 1 (1). |
|
[10] | L’Ecuyer, P., Richard, S., Chen, E. J., & Kelton, W. D. (2002). An object-oriented random-numberpackage with many long streams and substreams. Operations Research, 50, 1073-1075. |
|
[11] | L'Ecuyer, P. (1999). Good parameters and implementations for combined multiple recursive random number generators. Operations Research, 47, 159-164. |
|
[12] | Lin, J.-W., & McLeod, A. I. (2006). Improved Pen˜a-Rodrıguez portmanteau test. Computational statistics and data analysis. 51 (3), 1731-1738. |
|
[13] | Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical Software, 9 (1), 1-19. |
|
[14] | Mahdi, E., & McLeod, I. (2012). Improved multivariate portmanteau test. Journal of Time Series Analysis, 33 (2), 211-222. |
|
[15] | Reverter, A., & Chan, E. (2008). Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics, 24 (21), 2491-2497. |
|
[16] | Rossini, A., Tierney, L., & Li, N. (2007). Simple parallel statistical computing in R. Journal of Computational and Graphical Statistics, 16 (2), 399-420. |
|
[17] | Saltzer, J., Clarrk, D., Romkey, J., & Gramlich, W. (1985). The desktop computer as a network. 1EEE Journal on selected areas in communications, 3 (3). |
|
[18] | Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Luke, T., & Mansmann, U. (2009). State of the art in parallel computing with R. 31 (1), 1-26. |
|
[19] | Seiffert, U. (2002). Artificial neural networks on massively parallel computer hardware. ESANN'2002 proceedings-European symposium on artificial neural networks, (pp. 319-330). Bruges (Belgium). |
|
[20] | Sevcikova, H. (2004). Statistical simulations on parallel computers. Journal of Computational and Graphical Statistics, 13 (4), 886-906. |
|
[21] | Sterling, T., Becker, D., Salmon, J., & Daniel, S. (1999). How to build a Beowulf-A guide to the implementation and application of PC clusters. Cambridge, Ma: The MIT Press. |
|
[22] | Tierney, L., Rossini, A., & Li, N. (2009). Snow: A parallel computing framework for the R system. International journal of parallel programming, 37, 78-90. |
|
[23] | Vera, G., Jansen, R., & Suppi, R. (2008). R/parallel-speeding up bioinformatics analysis with R. BMC Bioinformatics, 9 (390). |
|
[24] | Waldron, L., Pintilie, M., Tsao, M.-S., Shepherd, F., Huttenhower, C., & Jurisica, I. (2011). Optimized application of penalized regression methods to diverse genomic data. Bioinformatics, 27 (24), 3399-3406. |
|
[25] | Watson-Haigh, N., Kadarmideen, H., & Reverter, A. (2010). PCIT: an R package for weighted gene co-expression networks based on partial correlation and information theory approaches. Bioinformatics, 26 (3), 411-413. |
|