American Journal of Applied Mathematics and Statistics
ISSN (Print): 2328-7306 ISSN (Online): 2328-7292 Website: https://www.sciepub.com/journal/ajams Editor-in-chief: Mohamed Seddeek
Open Access
Journal Browser
Go
American Journal of Applied Mathematics and Statistics. 2013, 1(2), 30-35
DOI: 10.12691/ajams-1-2-3
Open AccessArticle

A Shared Parameter Model for Longitudinal Data with Missing Values

Ahmed M. Gad1, and Nesma M. M. Darwish1

1Department of Statistics, Faculty of Economics and Political Science, Cairo University, Cairo, Egypt

Pub. Date: April 26, 2013

Cite this paper:
Ahmed M. Gad and Nesma M. M. Darwish. A Shared Parameter Model for Longitudinal Data with Missing Values. American Journal of Applied Mathematics and Statistics. 2013; 1(2):30-35. doi: 10.12691/ajams-1-2-3

Abstract

Longitudinal studies represent one of the principal research strategies employed in medical and social research. These studies are the most appropriate for studying individual change over time. The prematurely withdrawal of some subjects from the study (dropout) is termed nonrandom when the probability of missingness depends on the missing value. Nonrandom dropout is common phenomenon associated with longitudinal data and it complicates statistical inference. The shared parameter model is used to fit longitudinal data in the presence of nonrandom dropout. The stochastic EM algorithm is developed to obtain the model parameter estimates. Also, parameter estimates of the dropout model have been obtained. Standard errors of estimates have been calculated using the developed Monte Carlo method. The proposed approach performance is evaluated through a simulation study. Also, the proposed approach is applied to a real data set.

Keywords:
longitudinal data missing data Monte Carlo nonrandom missing repeated measures shared parameters standard errors stochastic EM

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 2

References:

[1]  Rubin, D. B. “Inference and missing data”. Biometrika, 63, 581-592. 1976.
 
[2]  Little, R.J.A., Rubin, D.B., “Statistical Analysis with Missing Data”,.Wiley, NewYork.1987.
 
[3]  Wu, M. C. and Carroll, R. J. “Estimation and comparison of changes in the presence of informative right censoring by modelling the censoring process”, Biometrics, 44, 175-188. 1988.
 
[4]  Follmann, D. and Wu. M. “An approximate generalized linear model with random effects for informative missing Data”, Biometrics, 51, 151- 168. 1995.
 
[5]  Wu, M. C. and Bailey, K. R. “Estimation and comparison of changes in the presence of informative right censoring: conditional linear model”, Biometrics, 45, 939-955. 1989.
 
[6]  Ten Have, T. R., Kunselman, A. R., Pulkstenis, E. P., and Landis, J. R. “Mixed effects logistic regression models for longitudinal binary response data with informative drop-out”. Biometrics 54, 367-383. 1998.
 
[7]  Pulkstenis, E.P., Ten Have, T. R. and Landis, J. R. “Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication”, Journal of the American Statistical Association, 93, 438-450. 1998.
 
[8]  Wu, M.C. and Follmann, D. A. “Use of summary measures to adjust for informative missingness in repeated measures data with random effects”, Biometrics, 55, 75-84. 1999.
 
[9]  Albert, P. S and Follumann, D.A., “A random effects transition model for longitudinal binary data with informative missigness”, Statistica Neerlandica, 57, 100-111. 2003.
 
[10]  Albert, P.S. and Follmann, D. A. “Modeling repeated count data subject to informative dropout”, Biometrics, 56, 667-677. 2000.
 
[11]  Dempster, A.P., Larid, N.M. and Rubin, D.B., “Maximum likelihood from incomplete data via the EM algorithm (with discussion)”, Journal of Royal Statistical Society B, 39, 1-38. 1997.
 
[12]  Tanner, M.A.,Wong,W.H., “The calculation of posterior distributions by data augmentation (with discussion)”, Journal of American Statistical Association, 82, 528-550. 1987.
 
[13]  Wei, G.C.G., Tanner, M.A., “A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithm,” Journal Royal Statistical Society B, 55, 425-437. 1990.
 
[14]  Celuex, G., Diebolt, J., “The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problems,” Computational Statistics Quarterly, 2, 73-82. 1985.
 
[15]  Delyon, B., Lavielle, M., Moulines, E., “Convergence of a stochastic approximation version of the EM Algorithm,” Annals of Statistics, 27, 94-128. 1999.
 
[16]  Diebolt, J., Ip, E.H.S., “Stochastic EM: method and application”. In: Gilks,W.R., Richardson, S., Spiegelhalter, D.J. (Eds.), Markov Chain Monte Carlo in Practice. Chapman & Hall, London. (Chapter 15). 1996.
 
[17]  Gu, M.G., Kong, F.H., “A stochastic approximation algorithm with Markov chain Monte Carlo method for incomplete data estimation problems,” Proc. Natl. Acad. Sci. USA 98, 7270-7274. 1998.
 
[18]  Zhu, H.T., Lee, S.Y., “Analysis of generalized linear mixed models via a stochastic approximation algorithm with Markov chain Monte Carlo method,” Statist. Comput., 12, 175-183. 2002.
 
[19]  McLachlan, G.J., Krishnan, T., “The EM Algorithm and Extensions”, Wiley, New York. 1997.
 
[20]  Louis, T.A., “Finding the observed information matrix when using the EM algorithm”. Journal of Royal Statistical Society, B 44, 226-232. 1982.
 
[21]  Meilijson, I., “A fast improvement to the EM algorithm on its own terms”, Journal of Royal Statistical Society, B 51, 127-138. 1989.
 
[22]  Meng, X.L., Rubin, D.B., “Maximum likelihood estimation via the ECM algorithm: a general framework”, Biometrika, 80, 267-278. 1993.
 
[23]  Efron, B., “Missing data, imputation, and the bootstrap”. Journal of American Statistical Association, 89, 463-475. 1994.
 
[24]  Ip, E.H.S., “A stochastic EM estimator in the presence of missing data: theory and applications”. Technical Report, Division of Biostatistics, Stanford University, Stanford, California, US. 1994.
 
[25]  Tsonaka, R., Verbeke, G. and Lesaffre, E. “A semi-parametric shared parameter model to handle nonmonotone nonignorable missingness”, Biometrics 65, 81-87. 2009.
 
[26]  Gad, A.M and Ahmed, A. S. “Analysis of longitudinal data with intermittent missing values using the stochastic EM algorithm”. Computational Statistics & Data Analysis, 50, 2702-2714. 2006.
 
[27]  McCullagh, P. and Nelder, J. A. “Generalized Linear Models”. 2nd edititon, Chapman and Hall, England. 1989.
 
[28]  Jennrich, R.I., Schluchter,M.D., “Unbalanced repeated measures models with structured covariance matrices”. Biometrika 42, 805-820. 1986.
 
[29]  Heyting, A. and Tolboom, J. T. B. M. and Essers, J. G. A. “Statistical handling of dropouts in longitudinal clinical trials”, Statistics in Medicine, 11, 2043-2062. 1992.
 
[30]  Diggle, P.J. and Kenward, M.G. “Informative dropout in longitudinal data analysis”, Journal of Royal Statistical Society B, 43, 49-93. 1994.