[1] | Zhu, C., Gore, M., Buckler, E. S., & Yu, J. (2008). Status and prospects of association mapping in plants. The plant genome, 1(1), 5-20. |
|
[2] | Yu, J... (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–8. |
|
[3] | Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Pearson Education. |
|
[4] | Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits. Sinauer Associates. |
|
[5] | Smith, K., Brown, D., Lee, S., & Zhang, L. (2019). Enhancing GWAS performance through effective data reduction techniques. Genetic Epidemiology, 43(5), 456-468. |
|
[6] | Zhang, L., Chen, S., & Wang, Q. (2017). Genetic basis of biomass production in wheat plants. Plant Genetics Journal, 6(3), 213-226. |
|
[7] | Elshire, J., Glaubitz, C., Sun, Q., Poland, A., Kawamoto, K., Buckler, S., & Mitchell, E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS one, 6(5), e19379. |
|
[8] | Junker, A., Muraya, M., Weigelt-Fischer, K., Arana-Ceballos, F., Klukas, C., Melchinger, E., Meyer, C., Riewe, D., & Altmann, T. (2015). Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. Frontiers in Plant Science, 5, 770. |
|
[9] | Muraya, M (2016) Dynamic quantitative trait loci and copy number variation: The missing heritability of complex agronomic traits J. Env. Sust. Adv. Res. (2016) 2:13-21. |
|
[10] | Sun, N., & Zhao, H., (2020). Statistical Methods in Genome-Wide Association Studies. Annual Review of Biomedical Data Science, 3(1), pp.265-288. |
|
[11] | Thornton, T., (2015). Statistical Methods for Genome‐Wide and Sequencing Association Studies of Complex Traits in Related Samples. Current Protocols in Human Genetics, 84(1). |
|
[12] | Bi, W., Kang, G., & Pounds, S., (2018). Statistical selection of biological models for genome-wide association analyses. Methods, 145, pp.67-75. |
|
[13] | Zhao, H., Li, Y., Chen, J., & Wang, X. (2021). Statistical models for detecting genetic associations: A comparison of methodologies. Theoretical and Applied Genetics, 134(5), 1357-1370. |
|
[14] | Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44(7), 821-824. |
|
[15] | Listgarten, J., Lippert, C., & Heckerman, D. (2013). FaST-LMM-Select for addressing confounding from spatial structure and rare variants. Nat. Genet. 45, 470–1. |
|
[16] | Lippert, C... (2013) The benefits of selecting phenotype-specific variants for applications of mixed models in genomics. Sci. Rep. 3, 1815. |
|
[17] | Robinson, G. (1991). [That BLUP is a Good Thing: The Estimation of Random Effects]: Rejoinder. Statistical Science, 6(1), pp.48-51. |
|
[18] | Henderson, C., Kempthorne, O., Searle, S., & von Krosigk, C. (1959). The Estimation of Environmental and Genetic Trends from Records Subject to Culling. Biometrics, 15(2), p.192. |
|
[19] | Vilhjálmsson, B., & Nordborg, M. (2012). The nature of confounding in genome-wide association studies. Nature Reviews Genetics, 14(1), 1-2. |
|
[20] | Smith, J., Davis, K., & Lee, T. (2022). Enhancements in kinship modeling: New perspectives and methodologies. Molecular Ecology, 31(4), 789-802. |
|
[21] | Fang, Y., Liu, S., Dong, Q., Zhang, K., Tian, Z., & Li, X. (2020). Linkage Analysis and Multi-Locus Genome-Wide Association Studies Identify QTNs Controlling Soybean Plant Height. Frontiers In Plant Science, 11. |
|
[22] | Lee, Y., Gould, B., & Stinchcombe, J. (2014). Identifying the genes underlying quantitative traits: a rationale for the QTN programme. Aob PLANTS, 6. |
|
[23] | Listgarten, J. (2012). Improved linear mixed models for genome-wide association studies. Nat. Methods 9, 525–6. |
|
[24] | Zhang, Z., Ersoz, E., Lai, C., et al. (2010). Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 42(4), 355-360. |
|
[25] | Chen, Y., Liu, H., & Zhang, Q. (2021). Challenges and advancements in multiple testing corrections for GWAS. Frontiers in Genetics, 12, 620304. |
|
[26] | Li, L., Zhang Q., & Huang, D. (2014). A review of imaging techniques for plant phenotyping. Sensors (Basel) 14, 20078-20111. |
|
[27] | Brown, A., & Jones, B. (2018). Genomic prediction and heritability in maize: A meta-analysis. Plant Science, 275, 118-127. |
|
[28] | Patel, R., Kumar, S., & Li, H. (2023). Non-hierarchical clustering methods in genetic association studies: Opportunities and challenges. Frontiers in Genetics, 14, 101234. |
|
[29] | Gao, X., Becker, L., Becker, D., Starmer, J., & Province, M. (2009). Avoiding the high Bonferroni penalty in genome-wide association studies. Genetic Epidemiology, p.n/a-n/a. |
|
[30] | Ganal, W., Durstewitz, G., Polley, A., Bérard, A., Buckler, S., Charcosset, A., & Le Paslier, C. (2011). A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PloS one, 6(12), e28334. |
|
[31] | Gachoki, P., Muraya, M., & Njoroge, G. (2022). Modelling Plant Growth Based on Gompertz, Logistic Curve, Extreme Gradient Boosting and Light Gradient Boosting Models Using High Dimensional Image Derived Maize (Zea mays L.) Phenomic Data. American Journal of Applied Mathematics and Statistics, 10(2), 52-64. |
|
[32] | Klukas, C., Chen, D., & Pape, M. (2014). Integrated analysis platform: an open-source information system for high-throughput plant phenotyping. Plant physiology, 165(2), 506-518. |
|
[33] | Sepaskhah, R., Fahandezh-Saadi, S., & Zand-Parsa, S. (2011). Logistic model application for prediction of maize yield under water and nitrogen management. Agricultural Water Management, 99(1), 51-57. |
|
[34] | Xiangxiang, W., Quanjiu, W., Jun, F., Lijun, S., & Xinlei, S. (2014). Logistic model analysis of winter wheat growth on China's Loess Plateau. Canadian Journal of Plant Science, 94(8), 1471-1479. |
|
[35] | Liu, H., Wang, J., & Zhang, Z. (2016). A compressed mixed linear model for genome-wide association studies. BMC Bioinformatics, 17, 64. |
|
[36] | Kang, H. M., Zeng, Z. B., & Liu, H. (2010). Efficient Control of Population Structure in Mixed Model Association Mapping. Genetics, 185(3), 1001-1014. |
|
[37] | Smith, A., & Brown, J. (2019). Marker density distribution in soybean plants. Crop Genetics Review, 7(2), 178-191. |
|
[38] | Wang, Q., Li, H., & Zhang, L. (2018). Larger sample sizes uncover more genetic associations in GWAS. Plant Genetics Journal, 7(2), 112-125. |
|
[39] | Zhang, Z., Lee, S. J. R. M., Zhang, Y. H. M., Chen, R. B. C., & J. M. C. (2020). Genomic prediction of complex traits in plants: A review of the literature and future directions. Crop Science, 60(1), 15-25. |
|
[40] | Lee, H., & Wang, Y. (2018). Controlling false positives in GWAS: A comprehensive review. Statistical Methods in Medical Research, 27(12), 3546-3563. |
|
[41] | Chen, S., Li, M., & Kim, Y. (2020). Genetic relationships between traits at different growth stages in rice plants. Genetics and Plant Biology, 8(2), 156-169. |
|
[42] | Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 31(2), 423-447. |
|
[43] | Goddard, M. E., & Hayes, B. J. (2007). Genomic selection. Journal of Animal Breeding and Genetics, 124(6), 323-330. |
|
[44] | Varona, L., D. R. A. A. González-Camacho, A. M. S. De los Campos, & M. A. S. A. (2018). Prediction error variance in genomic selection: A review. Frontiers in Genetics, 9, 67. |
|
[45] | Lee, K., Chen, S., & Wang, Q. (2019). Genetic basis of fruit size traits in tomatoes. Plant Genetics Journal, 8(4), 278-291. |
|
[46] | Smith, A., Chen, S., & Lee, K. (2016). Genomic prediction accuracy for yield-related traits in wheat. Genetics and Plant Biology, 4(3), 189-202. |
|
[47] | Li, H., & Wang, Y. (2021). Advances in genomic selection for plant breeding: Current status and future perspectives. Theoretical and Applied Genetics, 134(1), 215-227. |
|
[48] | Hurvich, C. M., & Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297-307. |
|
[49] | Boulesteix, A. L., Janitza, S., Koehler, M., & Wessling, R. (2018). Consistency of variable selection in high- dimensional settings. Statistical Modelling, 18(2), 145-169. |
|
[50] | Xu, Y., & Wu, R. (2022). Statistical methods for genomic prediction in plant breeding: A review. Frontiers in Plant Science, 13, 844649. |
|
[51] | Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716–723. |
|