[1] | Riemann, Bernhard. die Hypothesen, welche der Geometrie zu Grunde liegen.Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 13 (1861): 236-252. |
|
[2] | Euler, Leonhard (1740). De Summis Serierum Reciprocarum. Commentarii academiae scientiarum Petropolitanae. Vol. 7, pp. 123-134. |
|
[3] | Odlyzko, A. M. (1987), ‘On the distribution of spacings between zeros of the zeta function’, Mathematics of Computation 48(177), 273-308. |
|
[4] | Czerwik, Stephan (2002). Functional Equations and Inequalities in Several Variables. P O Box 128, Farrer Road, Singapore 912805: World Scientific Publishing Co. p. 410. ISBN 981-02-4837-7. |
|
[5] | A. (2003). The Riemann Zeta-Function: Theory and Applications. Dover Publications. |
|
[6] | Titchmarsh, E. C. (1986). The Theory of the Riemann Zeta-Function. Oxford University Press. |
|
[7] | Derbyshire, J. "The Prime Number Theorem." Ch. 3 Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics New York: Penguin, pp. 32-47, 2004. |
|
[8] | https://brilliant.org/wiki/riemann-zeta-function. |
|
[9] | Ahlfors, L. V. Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable. McGraw-Hill, 1979. |
|
[10] | "Riemann-Schwarz principle", Encyclopedia of Mathematics, EMS Press, 2001 [1994]. |
|
[11] | E. C. Titchmarsh, "The Theory of the Riemann Zeta-Function", Oxford University Press; 2nd edition (February 5, 1987). |
|
[12] | Eric Weisstein. Riemann Zeta Function Zeros. Retrieved 24 April 2021. |
|
[13] | Bui, H. Q., & Keating, J. P. (2019). The first 10 billion zeros of the Riemann zeta function, and zeros computation at very large height. Research in the Mathematical Sciences, 6(1), 10. |
|
[14] | Hardy, G. H.; Littlewood, J. E. (1921), The zeros of Riemann's zeta-function on the critical line, Math. Z., 10 (3-4): 283-317. |
|
[15] | Alzer, H.Monotonicity Properties of the Riemann Zeta Function. Mediterr. J. Math. 9, 439–452 (2012). |
|