[1] | Silvey, S. D. (1980). Optimal Design. Chapman and Hall. |
|
[2] | Walsh, S. J., Lu, L., & Anderson-Cook, C. M. (2024). I-optimal or G-optimal: Do we have to choose?. Quality Engineering, 36(2), 227-248. |
|
[3] | Pukelsheim, F. (2006). Optimal Design of Experiments. Society for Industrial and Applied Mathematics. |
|
[4] | Kiefer, J. (1959). Optimum Experimental Designs. Journal of the Royal Statistical Society. Series B (Methodological), 21(2), 272-319. |
|
[5] | Fedorov, V. V. (1972). Theory of Optimal Experiments. Academic Press. |
|
[6] | Cook, R. D., & Nachtsheim, C. J. (1980). A Comparison of Algorithms for Constructing Exact D-optimal Designs. Journal of Statistical Computation and Simulation, 11(4), 317-332. |
|
[7] | Mitchell, T. J. (1974). An Algorithm for the Construction of 'D-optimal' Experimental Designs. Technometrics, 16(2), 203-210. |
|
[8] | Meyer, M. C., & Nachtsheim, C. J. (1995). The Coordinate-Exchange Algorithm for Constructing Exact Optimal Experimental Designs. Technometrics, 37(1), 60-69. |
|
[9] | Atkinson, A. C., Donev, A. N., & Tobias, R. D. (2007). Optimum Experimental Designs, with SAS. Oxford University Press. |
|
[10] | Borkowski, J. J. (2003). Designs with Minimal Variance of Prediction for Response Surfaces. Springer. |
|
[11] | Giovagnoli, A., & Wynn, H. P. (1982). G-optimality of Experimental Designs for Generalized Linear Models. Journal of the Royal Statistical Society. Series B (Methodological), 44(3), 336-343. |
|
[12] | Dette, H., & Pepelyshev, A. (2010). Generalized E- and G-optimal Designs for General Regression Models. The Annals of Statistics, 38(4), 2062-2092. |
|
[13] | Jones, B., & Goos, P. (2011). A Candidate-set-free Algorithm for Generating D-optimal Designs. Technometrics, 53(4), 376-389. |
|
[14] | Cornelious N.O. (2019). Construction of thirty-nine points second order rotatable design in three dimensions with a practical hypothetical example. European International Journal of Science and Technology.8(4):51-57 |
|
[15] | Cornelious, N. O. (2024). A Forty-Two Points Second Order Rotatable Design in Three Dimensions Constructed using Trigonometric Functions Transformations. International Journal of Advances in Scientific Research and Engineering (IJASRE), 10-14. |
|
[16] | Cornelious, N. O., & Ogega, J. M. (2024). Construction of two New Second Order Rotatable Designs Using Trigonometric Functions. Asian Journal of Probability and Statistics, 26(6), 41-48. |
|
[17] | Box, G. E., & Hunter, J. S. (1957). Multi-factor experimental designs for exploring response surfaces. The Annals of Mathematical Statistics, 195-241. |
|