[1] | Geetha, S., Gouthami, S.: Internet of things enabled real time water quality monitoring system. Smart Water 2(1). 1–19. 2016. |
|
[2] | Rajaee, T., Boroumand, A.: Forecasting of chlorophyll-a concentrations in south san francisco bay using five different models. Applied Ocean Research 53, 208–217. 2015. |
|
[3] | Araghinejad, S.: Data-driven Modeling: Using MATLAB®in Water Resources and Environmental engineering. Springer Science & Business Media. Vol. 67. 2013. |
|
[4] | Nourani, V., Alami, M.T., Vousoughi, F.D.: Self-organizing map clustering technique for ann-based spatiotemporal modeling of groundwater quality parameters. Journal of Hydroinformatics 18(2), 288–309. 2016. |
|
[5] | Zare, A., Bayat, V., Daneshkare, A.: Forecasting nitrate concentration in ground-water using artificial neural network and linear regression models. International agrophysics 25(2). 2011. |
|
[6] | Huo, S., He, Z., Su, J., Xi, B., Zhu, C.: Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences 18, 310–316. 2013. |
|
[7] | Chang, F.-J., Chen, P.-A., Chang, L.-C., Tsai, Y.-H.: Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Science of the Total Environment 562, 228–236. 2016. |
|
[8] | Chen, D.Q., Mao, S.-Q., Niu, X.-F.: Tests and classification methods in adaptive designs with applications. Journal of Applied Statistics 50(6), 1334–1357. 2023. |
|
[9] | Li, Y., Linero, A.R., Murray, J.: Adaptive conditional distribution estimation with bayesian decision tree ensembles. Journal of the American Statistical Association, 1–14. 2022. |
|
[10] | Henrique, B.M., Sobreiro, V.A., Kimura, H.: Literature review: Machine learning techniques applied to financial market prediction. Expert systems with applications 124, 226–251. 2019. |
|
[11] | Lu, H., Ma, X.: Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 249, 126169. 2020. |
|
[12] | Huang, P., Trayler, K., Wang, B., Saeed, A., Oldham, C.E., Busch, B., Hipsey, M.R.: An integrated modelling system for water quality forecasting in an urban eutrophic estuary: The swan-canning estuary virtual observatory. Journal of Marine Systems 199, 103218. 1995. |
|
[13] | Wang, S., Peng, H., Liang, S.: Prediction of estuarine water quality using interpretable machine learning approach. Journal of Hydrology 605, 127320. 2022. |
|
[14] | Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol.30. 2017. |
|
[15] | Li, L., Qiao, J., Yu, G., Wang, L., Li, H.-Y., Liao, C., Zhu, Z.: Interpretable tree-based ensemble model for predicting beach water quality. Water Research 211, 118078. 2022. |
|
[16] | Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks:The state of the art. International journal of forecasting 14(1), 35–62. 1998. |
|
[17] | Anmala, J., Meier, O.W., Meier, A.J., Grubbs, S.: Gis and artificial neural network–based water quality model for a stream network in the upper green river basin, Kentucky, USA. Journal of Environmental Engineering 141(5), 04014082. 2015. |
|
[18] | Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., Wu, H.: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of qiantang river, China. Environmental Science and Pollution Research 26, 19879–19896. 2019. |
|
[19] | Singh, K.P., Basant, A., Malik, A., Jain, G.: Artificial neural network modeling of the river water quality—a case study. Ecological modelling 220(6), 888–895. 2009. |
|
[20] | Garc´ıa-Alba, J., B´arcena, J.F., Ugarteburu, C., Garc´ıa, A.: Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water research 150, 283–295. 2019. |
|
[21] | Peng, Z., Hu, W., Liu, G., Zhang, H., Gao, R., Wei, W.: Development and evaluation of a real-time forecasting framework for daily water quality forecasts for lake chaohu to lead time of six days. Science of the total environment 687, 218–231. 2019. |
|
[22] | Zhao, L., Gkountouna, O., Pfoser, D.: Spatial auto-regressive dependency interpretable learning based on spatial topological constraints. ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(3), 1–28. 2019. |
|
[23] | Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996). |
|
[24] | Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67. 1970. |
|
[25] | Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794. 2016. |
|
[26] | Breiman, L.: Random forests. Machine learning 45, 5–32. 2001. |
|
[27] | LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324. 1998. |
|
[28] | Linero AR, Basak P, Li Y, Sinha D. Bayesian survival tree ensembles with submodel shrinkage. Bayesian Analysis. 2022 Sep;17(3):997-1020. |
|
[29] | Li, Y., 2021. Bayesian Ensemble Tree Models for Nonparametric Problems (Doctoral dissertation, The Florida State University). |
|
[30] | Mao, S., 2022. Time Series and Machine Learning Models for Financial Markets Forecast (Doctoral dissertation, The Florida State University). |
|