[1] | Basnayake, W.M.N.D., Attygalle, M. D. T., Liyanage-hansen, L., & Nandalal, K. D. W. (2019). Modified 1D Multilevel DWT Segmented ANN Algorithm to Reduce Edge Distortion. 7(1), 25–31. |
|
[2] | Moroff, N. U., Kurt, E., & Kamphues, J. (2021). Machine Learning and Statistics: A Study for assessing innovative Demand Forecasting Models. Procedia Computer Science, 180, 40–49. |
|
[3] | Brownlee, J. (2020). How to Develop LSTM Models for Time Series Forecasting. Machine LEarning MAstery. https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/ |
|
[4] | Wang, W., Gelder, P. H. A. J. M. V., Vrijling, J. K., & Ma, J. (2006). Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology, 324(1–4), 383–399. |
|
[5] | Tong, H., & Lim, K. S. (1980). Threshold Autoregression, Limit Cycles and Cyclical Data. Journal of the Royal Statistical Society: Series B (Methodological), 42(3), 245–268. |
|
[6] | Basnayake, W.M.N.D (2017). Wavelet Based Nonlinear Autoregressive Neural Network to Predict Daily Wavelet Based Nonlinear Autoregressive Neural Network to Predict Daily Reservoir Inflow. March 2018. |
|
[7] | Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Snin, H. H., Zheng, Q., Yen, N. C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. |
|
[8] | Liu, H., Chen, C., Tian, H. Q., & Li, Y. F. (2012). A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renewable Energy, 48, 545–556. |
|
[9] | Wang, W. chuan, Chau, K. wing, Qiu, L., & Chen, Y. bo. (2015). Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Environmental Research, 139, 46–54. |
|
[10] | Lin, Y., Yan, Y., Xu, J., Liao, Y., & Ma, F. (2021). Forecasting stock index price using the CEEMDAN-LSTM model. North American Journal of Economics and Finance, 57, 101421. |
|
[11] | Le, J. (2018). Divide and Conquer Algorithms. Divide-and-Conquer Algorithm | by James Le | Data Notes. Data Notes. https://data-notes.co/divide-and-conquer-algorithms-b135681d08fc |
|
[12] | Mallat, S. G. (1989). A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693. |
|
[13] | Rhif, M., Abbes, A. Ben, Farah, I. R., Martínez, B., & Sang, Y. (2019). Wavelet transform application for/in non-stationary time-series analysis: A review. In Applied Sciences (Switzerland) (Vol. 9, Issue 7, p. 1345). Multidisciplinary Digital Publishing Institute. |
|
[14] | Zeiler, A., Faltermeier, R., Keck, I. R., Tomé, A. M., Puntonet, C. G., & Lang, E. W. (2010). Empirical mode decomposition - An introduction. Proceedings of the International Joint Conference on Neural Networks. |
|
[15] | Torres, M. E., Colominas, M. A., Schlotthauer, G., & Flandrin, P. (2011). A complete ensemble empirical mode decomposition with adaptive noise. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 4144–4147. |
|
[16] | Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. |
|
[17] | Gall, R. (2018). What is LSTM? | Packt Hub. Packtpub. https://hub.packtpub.com/what-is-lstm/ |
|