[1] | Yang, Y. and J. Kang, Joint analysis of mixed Poisson and continuous longitudinal data with nonignorable missing values. Computational Statistics & Data Analysis, 2010. 54(1): p. 193-207. |
|
[2] | Yaseen, A.S.A. and A.M. Gad, A stochastic variant of the EM algorithm to fit mixed (discrete and continuous) longitudinal data with nonignorable missingness. Communications in Statistics - Theory and Methods, 2019. |
|
[3] | Olkin, I. and R.F. Tate, Multivariate correlation models with mixed discrete and continuous variables. The Annals of Mathematical Statistics, 1961: p. 448-465. |
|
[4] | Celeux, G. and J. Diebolt, The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational statistics quarterly, 1985. 2(1): p. 73-82. |
|
[5] | Gad, A.M. and A.S. Ahmed, Analysis of longitudinal data with intermittent missing values using the stochastic EM algorithm. Computational Statistics & Data Analysis, 2006. 50(10): p. 2702-2714. |
|
[6] | Gad, A.M. and A.S. Ahmed, Sensitivity analysis of longitudinal data with intermittent missing values. Statistical Methodology, 2007. 4(2): p. 217-226. |
|
[7] | Gad, A.M. and N.I. EL-Zayat, Fitting Multivariate Linear Mixed Model for Multiple Outcomes Longitudinal Data with Non-ignorable Dropout. International Journal of Probability and Statistics, 2018. 7(4): p. 97-105. |
|
[8] | Kim, J.K. and W. Fuller, Parametric fractional imputation for missing data analysis. Joint Statistical Meeting Proceedings, 2008: p. 158-169. |
|
[9] | Kim, J.K., Parametric fractional imputation for missing data analysis. Biometrika, 2011. 98(1): p. 119-132. |
|
[10] | Kim, J.Y. and J.K. Kim, Parametric fractional imputation for nonignorable missing data. Journal of the Korean Statistical Society, 2012. 41(3): p. 291-303. |
|
[11] | Kim, J.K. and M. Hong, Imputation for statistical inference with coarse data. Canadian Journal of Statistics, 2012. 40(3): p. 604-618. |
|
[12] | Yang, S., J.-K. Kim, and Z. Zhu, Parametric fractional imputation for mixed models with nonignorable missing data. Statistics and Its Interface, 2013. 6(3): p. 339-347. |
|
[13] | Yaseen, A. S., Gad, A. M., & Ahmed, A. S, Maximum Likelihood Approach for Longitudinal Models with Nonignorable Missing Data Mechanism Using Fractional Imputation. American Journal of Applied Mathematics and Statistics, 2016. 4(3): p. 59-66. |
|
[14] | Shen, S., C. Beunckens, C. Mallinckrodt, and G. Molenberghs, A local influence sensitivity analysis for incomplete longitudinal depression data. Journal of biopharmaceutical statistics, 2006. 16(3): p. 365-384. |
|
[15] | Pinheiro, J.C., C. Liu, and Y.N. Wu, Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution. Journal of Computational and Graphical Statistics, 2001. 10(2): p. 249-276. |
|
[16] | Wang, W.-L. and T.-H. Fan, Estimation in multivariate t linear mixed models for multiple longitudinal data. Statistica Sinica, 2011: p. 1857-1880. |
|
[17] | Luo, S., J. Ma, and K.D. Kieburtz, Robust Bayesian inference for multivariate longitudinal data by using normal/independent distributions. Statistics in medicine, 2013. 32(22): p. 3812-3828. |
|
[18] | Wang, W.-L., T.-I. Lin, and V.H. Lachos, Extending multivariate-t linear mixed models for multiple longitudinal data with censored responses and heavy tails. Statistical methods in medical research, 2018. 27(1): p. 48-64. |
|
[19] | Achcar, J.A., E.A. Coelho-Barros, J.R.T. Cuevas, and J. Mazucheli, Use of Lèvy distribution to analyze longitudinal data with asymmetric distribution and presence of left censored data. Communications for Statistical Applications and Methods, 2018. 25(1): p. 43-60. |
|
[20] | Lee, D., Y. Lee, M.C. Paik, and M.G. Kenward, Robust inference using hierarchical likelihood approach for heavy-tailed longitudinal outcomes with missing data: An alternative to inverse probability weighted generalized estimating equations. Computational statistics & data analysis, 2013. 59: p. 171-179. |
|
[21] | Wang, W.-L., Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values. TEST, 2018. 28: p. 1-27. |
|
[22] | Wang, W.-L. and T.-H. Fan, Bayesian analysis of multivariate t linear mixed models using a combination of IBF and Gibbs samplers. Journal of Multivariate Analysis, 2012. 105(1): p. 300-310. |
|
[23] | Wang, W.L. and T.I. Lin, Multivariate t nonlinear mixed-effects models for multi-outcome longitudinal data with missing values. Statistics in medicine, 2014. 33(17): p. 3029-3046. |
|
[24] | Peel, D. and G.J. McLachlan, Robust mixture modelling using the t distribution. Statistics and computing, 2000. 10(4): p. 339-348. |
|
[25] | McLachlan, G. and T. Krishnan, The EM algorithm and extensions. Vol. 382. 2007: John Wiley & Sons. |
|
[26] | Andrews, D.F. and C.L. Mallows, Scale mixtures of normal distributions. Journal of the Royal Statistical Society. Series B (Methodological), 1974: p. 99-102. |
|
[27] | Meza, C., F. Osorio, and R. De la Cruz, Estimation in nonlinear mixed-effects models using heavy-tailed distributions. Statistics and Computing, 2012. 22(1): p. 121-139. |
|
[28] | Forbes, F. and D. Wraith, A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: application to robust clustering. Statistics and Computing, 2014. 24(6): p. 971-984. |
|
[29] | Kenward, M.G., Selection models for repeated measurements with non-random dropout: an illustration of sensitivity. Statistics in medicine, 1998. 17(23): p. 2723-2732. |
|
[30] | Diggle, P. and M.G. Kenward, Informative drop-out in longitudinal data analysis. Applied statistics, 1994: p. 49-93. |
|
[31] | Little, R.J. and D.B. Rubin, statistical analysis with missing data. 1987, New York: Wiley. |
|
[32] | Meng, X.-L. and D.B. Rubin, Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 1993. 80(2): p. 267-278. |
|
[33] | Council, N.R., Principles and methods of sensitivity analyses, in The Prevention and Treatment of Missing Data in Clinical Trials. 2010, National Academies Press (US). |
|
[34] | Daniels, M.J., D. Jackson, W. Feng, and I.R. White, Pattern mixture models for the analysis of repeated attempt designs. Biometrics, 2015. 71(4): p. 1160-1167. |
|
[35] | Jennrich, R.I. and M.D. Schluchter, Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 1986. 42: p. 805-820. |
|
[36] | Propert, K.J., A.J. Schaeffer, C.M. Brensinger, J.W. Kusek, L.M. Nyberg, and J.R. Landis, A prospective study of interstitial cystitis: results of longitudinal followup of the interstitial cystitis data base cohort. The Journal of urology, 2000. 163(5): p. 1434-1439. |
|
[37] | Karlis, D. and L. Meligkotsidou, Multivariate Poisson regression with covariance structure. Statistics and Computing, 2005. 15(4): p. 255-265. |
|
[38] | Shi, P. and E.A. Valdez, Multivariate negative binomial models for insurance claim counts. Insurance: Mathematics and Economics, 2014. 55: p. 18-29. |
|