[1] | Aghabozorgi, S., Shirkhorshidi, A. S., & Wah, T. Y. (2015). Time-series clustering – A decade review. Information Systems, 53, 16-38. |
|
[2] | Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. (1984). Classification and Regression Trees. Taylor & Francis. |
|
[3] | Chicco, G., Napoli, R., & Piglione, F. (2006). Comparisons among Clustering Techniques for Electricity Customer Classification. IEEE Transactions on Power Systems, 933-940. |
|
[4] | Deshani K.A.D, Liyanage-Hansen L. and Attygalle D. (2019). Artificial Neural Network for Dynamic Iterative Forecasting: Forecasting Hourly Electricity Demand, American Journal of Applied Mathematics and Statistics, Vol. 7, No. 1, January 2019. |
|
[5] | Deshani K.A.D, Attygalle D., Liyanage-Hansen L. and Lakraj G.P., (2017). Dynamic Short Term Load Forecasting using Functional Principal Component Regression, International Conference on Machine Learning and Data Engineering Sydney, Australia. |
|
[6] | Deshani, K.A.D, Attygalle, M.D.T, Hansen, L. L., & Karunarathne, A. (2014). An Exploratory Analysis on Half-Hourly Electricity Load Patterns Leading to Higher Performances in Neural Network Predictions. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 3, May 2014 (pp. 37-51) |
|
[7] | Deshani, K.A.D, Hansen, L. L., Attygalle, M.D.T, & Karunarathne, A. (2014). Improved Neural Network Prediction Performances of Electricity Demand: Modifying Inputs through Clustering. Second International Conference on Computational Science and Engineering (pp. 137-147). India: AIRCC. |
|
[8] | Gładysz, Barbara and Kuchta, Dorota, (2008). Application of regression trees in the analysis of electricity load, Operations Research and Decisions, 4, issue, p. 19-28. |
|
[9] | Hambali, M., Akinyemi, A., Oladunjoye, J., & Yusuf, N. (2016). Electric Power Load Forecast Using Decision Tree Algorithms. Computing, Information Systems, Development Informatics & Allied Research Journal, 29-42. |
|
[10] | Hernández, L., Baladrón, C., Aguiar, J., Carro, B., & Sánchez-Esguevillas, A. (2012). Classification and Clustering of Electricity Demand Patterns in Industrial Parks. Energies 2012, 5215-5228. |
|
[11] | Lee, K., Cha, Y., & Park, J. (1992). Shoert Term Load Forecasting using Artificial Neural Networks. Transactions on Power Systems, 124-132. |
|
[12] | López, M., Valero, S., Senabre, C., & Aparicio, J. (2011). A SOM Neural Network Approach to Load Forecasting. Meteorological and Time Frame Influence. Proceedings of the 2011 International Conference on Power Engineering, Energy and Electrical Drives. Torremolinos. |
|
[13] | Räsänen, T., Voukantsis, D., Niska, H., Karatzas, K., & Kolehmainen, M. (2010). Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data. Applied Energy, 87, 3538-3545. |
|
[14] | Ranaweera, D., Hubele, N., & Papalexopoulos, A. (1995). Application of radial basis function neural network model for short-term load forecasting. IEE Proceedings-Generation, Transmission and Distribution, 142, 45-50. |
|
[15] | Steinberg, D., & Colla, P. (2009). CART: classification and regression trees. In The top ten algorithms in data mining, (p. 179). |
|