[1] | http://www.cia.gov/library/publications/the-word-factbook/goes/ni.html. |
|
[2] | http://www.nigerianstat.gov.ng/index.php. |
|
[3] | Nigeria population. (2020). Demographics, Maps and Graphs _1586361654411.pdf-adobe reader. |
|
[4] | http://hdl.handle.net/10419/29449. |
|
[5] | Lewis, M. Paul; Gary F. Simons; & Charles D. Fennig, eds. (2016). "Nigeria". Ethnologue: Languages of the World (19th ed.). Dallas, Texas: SIL International Publications. |
|
[6] | https://en.Nigeria/Culture%20of%20Nigeria%20-%20Wikipedia.htm#cite_ref-1. |
|
[7] | http://www.indexmundi.com/site_map.html). |
|
[8] | http://www.indexmundi.com/site_map.html). |
|
[9] | Manufacturing sector report, (2015). Manufacturing in Africa. KPMG. |
|
[10] | http://en.m.wikipedia.org/wiki/Petrolum#production. |
|
[11] | http://en.m.wikipedia.org/wiki/Economy_of_Nigeria. |
|
[12] | FIRST CASE OF CORONA VIRUS DISEASE CONFIRMED IN NIGERIA, (NCDC-2020)". Nigeria Centre for Disease Control. 28 February 2020. Retrieved 10 March 2020 |
|
[13] | Becerikli, Y., Konar, A. F., & Samad, T. (2003). Intelligent optimal control with dynamic neural networks. Neural Netw. 16: 251-259. |
|
[14] | Dassen, W. R., Mulleneers, R. G., Den, Dulk K., Smeets, J. R., Cruz, F., Penn, O. C., & Wellens, H. J. (1990). An artificial neural network to localize atrioventricular accessory pathways in patients suffering from the Wolff-Parkinson-White syndrome. Pacing Clin. Electrophysiol.13, (12): 1792-1796. |
|
[15] | Kao, J. J, & Huang, S. S. (2000). Forecasts using neural network versus Box-Jenkins methodology for ambient air quality monitoring data. J. Air Waste Manag. Assoc. 50: 219-226. |
|
[16] | Mohamed E. I., Linder, R., Perriello, G., Di, Daniele. N., Poppl, S. J. & De, Lorenzo. A. (2002). Predicting Type 2 diabetes using an electronic nose based artificial neural network analysis. Diabetes Nutr. Metab. 15: 215-221. |
|
[17] | Augusteijn, M. F, & Shaw, K. A. (2002) Constructing a query-able radial basis function artificial neural network. Int. J. Neural Syst. 12: 159-175. |
|
[18] | Castellaro, C., Favaro, G., Castellaro, A., Casagrande, A., Castellaro, S., Puthenparampil, D. V., & Salimbeni, C. F. (2002) An artificial intelligence approach to classify and analyses EEG traces. Neurophysiol. Clin. 32: 193-214. |
|
[19] | Cimander, C., Bachinger, T., & Mandenius, C. F. (2003) Integration of distributed multi-analyzer monitoring and control in bioprocessing based on a real-time expert system. J. Biotechnol. 103: 237-248 |
|
[20] | Yen, G.G. & Meesad, P. (2001). Constructing a fuzzy rule-based system using the ILFN network and Genetic Algorithm. Int. J. Neural Syst. 11: 427-443. |
|
[21] | Z. Liu, P. M., O. Seydi, & G. Webb, (2020). Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data. |
|
[22] | Al-Qaness, M. A. A.; Ewees, A. A.; Fan, H.; & El Aziz, M., (2020) Optimization Method for Forecasting Confirmed Cases of COVID-19 in China. J Clin. Med. 9, (3). |
|
[23] | Jung, S. M., Akhmetzhanov, A. R., Hayashi, K., Linton, N. M., Yang, Y., Yuan, B., Kobayashi, T., Kinoshita, R. & Nishiura, H. (2020). Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases. Journal of Clinical Medicine. 9, (2). |
|
[24] | Fan, C.; Liu, L.; Guo, W.; Yang, A.; Ye, C.; Jilili, M.; Ren, M.; Xu, P.; Long, H.; & Wang, Y., (2020). Prediction of Epidemic Spread of the 2019 Novel Coronavirus Driven by Spring Festival Transportation in China: A Population-Based Study. Int. J. Environ. Res. Public Health. 17, (5). |
|
[25] | Zixin Hu, Q. G., Shudi Li, Li Jin & Momiao Xiong. (2020). Artificial Intelligence Forecasting of Covid-19 in China. |
|
[26] | Guo, Q.; Li, M.; Wang, C.; Wang, P.; Fang, Z.; tan, J.; Wu, S.; Xiao, Y. & Zhu, H. (2020). Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm. |
|
[27] | Liu, T., Hu, J., Xiao, J., He, G., Kang, M., Rong, Z., Lin, L., Zhong, H., Huang, Q., Deng, A., Zeng, W., Tan, X., Zeng, S., Zhu, Z., Li, J., Gong, D., Wan, D., Chen, S., Guo, L., Li, Y., Sun, L., Liang, W., Song, T., He, J.,& Ma, W. (2020) Time-varying transmission dynamics of Novel Coronavirus Pneumonia in China. |
|
[28] | Metsky, H. C., Freije, C. A., Kosoko-Thoroddsen, T. S. F., Sabeti, P. C. & Myhrvold, C. (2020) CRISPR-based surveillance for COVID-19 using genomically-comprehensive machine learning design. |
|
[29] | Ming, W.-K., Huang, J. & Zhang, C. J. P. (2020). Breaking down of healthcare system: Mathematical modelling for controlling the novel coronavirus (2019-nCoV) outbreak in Wuhan, China. |
|
[30] | Riou, J. & Althaus, C. L. (2020). PATTERN OF EARLY HUMAN-TO-HUMAN TRANSMISSION OF WUHAN 2019- NCOV. |
|
[31] | WMHC. (2020) Wuhan Municipal Health and Health Commission’s Briefing on the Current Pneumonia Epidemic Situation in Our City. 2020. http://wjw.wuhan.gov.cn/front/web/showDetail/2019123108989. |
|
[32] | Sasmita, P. A., Sha M., Yu-Ju W., Yu-Ping M., Rui-Xue Y., Qing-Zhi W., Chang S., Sean S., Scott R., Hein R., and Huan Z. (2020). Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infectious Diseases of Poverty. 9, (29). |
|
[33] | CDC. (2019) Novel coronavirus, Wuhan, China. https://www.cdc.gov/coronavirus/2019-nCoV/summary.html. |
|
[34] | Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl. J. Med. |
|
[35] | WHO. Novel Coronavirus-China. (2020). https://www.who.int/csr/don/12-january-2020-novel-coronavirus- china/en/. Accessed 1 Feb 2020. |
|
[36] | Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. (2019). A novel coronavirus from patients with pneumonia in China. N Engl. J. Med. |
|
[37] | Anders, U. (1996) Model selection in neural networks, ZEW Discussion Papers 96-21. |
|
[38] | O. C. Asogwa and A. V. Oladugba (2015). Of Students Academic Performance Rates Using Artificial Neural Networks (ANNs). American Journal of Applied Mathematics and Statistics.3, (4): 151-155. |
|
[39] | Cybenko, G. (1989) Approximation by superpositions of a sigmoidal function. Journal Mathematics of Control, Signals, and Systems, 2, (4): 303-314. |
|
[40] | Hornik, K., Stinchcombe, M. & White, H. (1989). “Multilayer feed forward networks are universal approximators,” Neural Networks. 2, (5): 359-366. |
|
[41] | Adefowoju, B. S. & Osofisan, A. O. (2004). Cocoa Production Forecasting Using Artificial Neural Networks. International Centre for Mathematics and Computer Science Nigeria. ICMCS 117-136. |
|
[42] | El-Sebakhy, E. A., Hadi, A. S. & Faisal, K. A. (2007). Iterative Least Squares Functional Networks Classifier. IEEE Transactions on Neural Networks. 18, (3): 844-850. |
|
[43] | Ritchie, S. G & Oh, C. (2007). Recognizing vehicle classification information from blade sensor signature, Pattern Recognition Letters. 28, (9): 1041-1049. |
|
[44] | Oladokun, V. O., Charles-Owaba. O. E. & Adebanjo, O. E. (2008) Predicting Student’s Academic performance using artificial neural network: A case study of an engineering course. The pacific Journal of Science and Technology. 9, (1): 72-79. |
|
[45] | Thipsuda, W. & Pusadee, S. (2010) A comparison of classical Discriminant Analysis and Artificial Neural Network in predicting student graduation outcomes. Proceedings of the Second International Conference of knowledge and Smart technologies: 24-25. |
|