World Journal of Organic Chemistry
ISSN (Print): 2372-2150 ISSN (Online): 2372-2169 Website: Editor-in-chief: Subrata Shaw
Open Access
Journal Browser
World Journal of Organic Chemistry. 2021, 9(1), 6-17
DOI: 10.12691/wjoc-9-1-2
Open AccessArticle

Qualitative and Quantitative Analyses of Synthesized Short-Chain Fatty Acid Phenyl Esters Using Fourier-Transform Infrared Spectroscopy

Ronald P. D’Amelia1, , Masashi W. Kimura1 and Marie-Claire Villon1

1Chemistry Department, Hofstra University, Hempstead, NY

Pub. Date: July 08, 2021

Cite this paper:
Ronald P. D’Amelia, Masashi W. Kimura and Marie-Claire Villon. Qualitative and Quantitative Analyses of Synthesized Short-Chain Fatty Acid Phenyl Esters Using Fourier-Transform Infrared Spectroscopy. World Journal of Organic Chemistry. 2021; 9(1):6-17. doi: 10.12691/wjoc-9-1-2


Fourier-transform infrared spectroscopy (FT-IR) is a widely used technique to qualitatively determine the molecular structure of organic compounds; however, using quantitative FT-IR (qFT-IR) for the compositional analyses of mixtures is less common. To reinforce instrumental use in undergraduate laboratories, we have devised a multipart experiment that not only combines the qualitative and quantitative aspects of FT-IR but also exposes students to computational and synthetic organic chemistry. The objectives of this experiment are to synthesize a series of phenyl esters (PhEs) of various molecular weights; use qualitative FT-IR to characterize and compare the synthesized products with standards, databases, and with theoretical spectra computed using the cost-efficient B97-3c functional; and determine the weight percent (wt. %) composition of a binary mixture. We report on the methodologies used to synthesize and purify four PhEs; characterize them using FT-IR, conduct theoretical calculations and compare their FT-IR spectra with experimental ones; and determine the wt. % composition of phenyl acetate (PhAc), phenyl propionate (PhPr), phenyl butyrate (PhBu), and phenyl hexanoate (PhHex) in binary mixtures ranging from 0% to 100%. The results show a strong, linear correlation of gravimetrically calculated wt. % composition of a selected compound in a binary mixture using qFT-IR. This experiment demonstrates the applicability of qFT-IR as an educational tool for the undergraduate chemical laboratory and combines four different branches of chemistry: computational, instrumental, organic, and analytical.

ab initio computational chemistry density functional theory esterification Fourier-transform infrared spectroscopy hands-on learning phenyl esters phenyl ester mixtures quantitative analysis synthetic organic chemistry undergraduate laboratory experimente

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Schuttlefield, J. D.; Grassian, V. H. ATR–FTIR Spectroscopy in the Undergraduate Chemistry Laboratory. Part I: Fundamentals and Examples. J. Chem. Educ. 2008, 85 (2), 279.
[2]  Robinson, J. W.; Frame, E. S.; Frame II, G. M. Chapter 4. In Undergraduate Instrumental Analysis; CRC Press: New York, 2014.
[3]  Conklin, A.; Goldcamp, M. J.; Barrett, J. Determination of Ethanol in Gasoline by FT-IR Spectroscopy. J. Chem. Educ. 2014, 91 (6), 889-891.
[4]  Gebel, M. E.; Kaleuati, M. A.; Finlayson-Pitts, B. J. Measurement of Organics Using Three FTIR Techniques: Absorption, Attenuated Total Reflectance, and Diffuse Reflectance. J. Chem. Educ. 2003, 80 (6), 672.
[5]  Lambert, J. B.; Gronet, S.; Shurvell, H. F.; Lightner, D. Organic Structural Spectroscopy, 2nd ed.; Prentice Hall: New Jersey, 2010.
[6]  Veening, H. Quantitative Infrared Analysis of Xylene Mixtures: Internal Standard Method. J. Chem. Educ. 1966, 43 (6), 319.
[7]  Silverstein, R. M.; Webster, F. X. Spectrometer Identification of Organic Compounds, 7th ed.; Wiley & Sons: New Jersey, 2011.
[8]  Smith, R. E., IV; McKee, J. R.; Zanger, M. The Electrophilic Bromination of Toluene: Determination of the Ortho, Meta, and Para Ratios by Quantitative FTIR Spectrometry. J. Chem. Educ. 2002, 79, 227.
[9]  Bellamy, M. K. Using FTIR-ATR Spectroscopy To Teach the Internal Standard Method. J. Chem. Educ. 2010, 87 (12), 1399-1401.
[10]  Tarhan, İ.; Ismail, A. A.; Kara, H. Quantitative Determination of Free Fatty Acids in Extra Virgin Olive Oils by Multivariate Methods and Fourier Transform Infrared Spectroscopy Considering Different Absorption Modes. Int. J. Food Prop. 2017, 20 (sup1), S790-S797.
[11]  Ismail, A. A.; van de Voort, F. R.; Emo, G.; Sedman, J. Rapid Quantitative Determination of Free Fatty Acids in Fats and Oils by Fourier Transform Infrared Spectroscopy. J. Am. Oil Chem. Soc. 1993, 70 (4), 335-341
[12]  Vongsvivut, J.; Heraud, P.; Zhang, W.; Kralovec, J. A.; McNaughton, D.; Barrow, C. J. Quantitative Determination of Fatty Acid Compositions in Micro-Encapsulated Fish-Oil Supplements Using Fourier Transform Infrared (FTIR) Spectroscopy. Food Chem. 2012, 135 (2), 603-609.
[13]  Christy, A. A.; Egeberg, P. K. Quantitative Determination of Saturated and Unsaturated Fatty Acids in Edible Oils by Infrared Spectroscopy and Chemometrics. Chemom. Intell. Lab. Syst. 2006, 82 (1), 130-136.
[14]  Al-Alawi, A.; van de Voort, F. R.; Sedman, J.; Ghetler, A. Automated FTIR Analysis of Free Fatty Acids or Moisture in Edible Oils. JALA J. Assoc. Lab. Autom. 2006, 11 (1), 23-29.
[15]  Mahesar, S. A.; Kandhro, A. A.; Khaskheli, A. R.; Talpur, M. Y.; Sherazi, S. T. H. SB-ATR FTIR Spectroscopic Monitoring of Free Fatty Acids in Commercially Available Nigella Sativa (Kalonji) Oil. J. Spectrosc. 2014, 2014, e510890.
[16]  Koca, N.; Rodriguez-Saona, L. E.; Harper, W. J.; Alvarez, V. B. Application of Fourier Transform Infrared Spectroscopy for Monitoring Short-Chain Free Fatty Acids in Swiss Cheese. J. Dairy Sci. 2007, 90 (8), 3596-3603.
[17]  Franck, P.; Sallerin, J. L.; Schroeder, H.; Gelot, M. A.; Nabet, P. Rapid Determination of Fecal Fat by Fourier Transform Infrared Analysis (FTIR) with Partial Least-Squares Regression and an Attenuated Total Reflectance Accessory. Clin. Chem. 1996, 42 (12), 2015-2020.
[18]  Marina, A. M.; Wan Rosli, W. I.; Noorhidayah, M. Rapid Quantification of Free Fatty Acids in Virgin Coconut Oil by FTIR Spectroscopy. Malays. Appl. Biol. 2015, 44 (2), 45-49.
[19]  D’Amelia, R. P.; Gentile, S.; Nirode, W. F.; Huang, L. Quantitative Analysis of Copolymers and Blends of Polyvinyl Acetate (PVAc) Using Fourier Transform Infrared Spectroscopy (FTIR) and Elemental Analysis (EA). World J. Chem. Educ. 2016, 4 (2), 25-31.
[20]  D’Amelia, R. P.; Huang, L.; Mancuso, J. Quantitative Analysis of Polyvinyl Alcohol-Polyethylene (PVOH-PE) Copolymers and Polyvinyl Pyrrolidone-Polyvinyl Acetate (PVP-PVAc) Copolymers and Blends Using Fourier Transform Infrared Spectroscopy and Elemental Analysis. World J. Chem. Educ. 2019, 7 (1), 1-11.
[21]  Guerrero-Pérez, M. O.; Patience, G. S. Experimental Methods in Chemical Engineering: Fourier Transform Infrared Spectroscopy-FTIR. Can. J. Chem. Eng. 2020, 98 (1), 25-33.
[22]  Stuart, B. Infrared Spectroscopy. In Kirk-Othmer Encyclopedia of Chemical Technology; American Cancer Society, 2015; pp 1-18.
[24]  Zhao, N.; Lamichanne, H. P.; Hastings, G. Comparison of Calculated and Experimental Isotope Edited FTIR Difference Spectra for Purple Bacterial Photosynthetic Reaction Centers with Different Quinones Incorporated into the QA Binding Site. Front. Plant Sci. 2013, 4.
[25]  Parlak, C.; Ramasami, P. Theoretical and Experimental Study of Infrared Spectral Data of 2-Bromo-4-Chlorobenzaldehyde. SN Appl. Sci. 2020, 2 (7), 1148.
[26]  A. Basiuk, V. IR Spectra Simulation as Auxiliary Tool for Gas Chromatography-Fourier Transform IR Spectroscopy-Mass Spectrometry Identification of Unknown Compounds: Comparison between Several Semi-Empirical Methods. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 1999, 55 (2), 289-298.
[27]  Alves, R. M.; Rodembusch, F. S.; Habis, C.; Moreira, E. C. FT-Raman and FTIR Spectra of Photoactive Aminobenzazole Derivatives in the Solid State: A Combined Experimental and Theoretical Study. Mater. Chem. Phys. 2014, 148 (3), 833-840.
[28]  Umar, Y.; Abu-Thabit, N.; Jerabek, P.; Ramasami, P. Experimental FTIR and Theoretical Investigation of the Molecular Structure and Vibrational Spectra of Acetanilide Using DFT and Dispersion Correction to DFT. J. Theor. Comput. Chem. 2019, 18 (02), 1950009.
[29]  Katsyuba, S. A.; Zvereva, E. E.; Grimme, S. Fast Quantum Chemical Simulations of Infrared Spectra of Organic Compounds with the B97-3c Composite Method. J. Phys. Chem. A 2019, 123 (17), 3802-3808.
[30]  Alecu, I. M.; Zheng, J.; Zhao, Y.; Truhlar, D. G. Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries. J. Chem. Theory Comput. 2010, 6 (9), 2872-2887.
[31]  Kesharwani, M. K.; Brauer, B.; Martin, J. M. L. Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided? J. Phys. Chem. A 2015, 119 (9), 1701-1714.
[32]  Gastegger, M.; Behler, J.; Marquetand, P. Machine Learning Molecular Dynamics for the Simulation of Infrared Spectra. Chem. Sci. 2017, 8 (10), 6924-6935.
[33]  Selzer, P. IR Spectra Simulation and Information Processing on the WWW. Chim. Int. J. Chem. 1998, 52 (11), 678-682.
[34]  Qiao, Z.; Welborn, M.; Anandkumar, A.; Manby, F. R.; Miller, T. F. OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features. J. Chem. Phys. 2020, 153 (12), 124111.
[35]  Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminformatics 2012, 4 (1), 17.
[36]  Avogadro: An Open Source Molecular Builder and Visualization Tool. Version 1.2.0 (with ORCA Support); University of Pittsburgh: Pittsburgh, PA, 2018.
[37]  Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114 (25), 10024-10035.
[38]  Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152 (22), 224108.
[39]  Brandenburg, J. G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A Revised Low-Cost Variant of the B97-D Density Functional Method. J. Chem. Phys. 2018, 148 (6), 064104.
[40]  National Institute of Advanced Industrial Science and Technology (AIST): Spectral Database for Organic Compounds (SDBS) (accessed Apr 12, 2021).