Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: https://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2015, 3(5), 140-144
DOI: 10.12691/tjant-3-5-5
Open AccessArticle

An Explicit upper Bound of the Argument of Dirichlet L-functions on the Generalized Riemann Hypothesis

Takahiro Wakasa1,

1Hachinohe National College of Technology, Uwanotai, Tamonoki, Hachinoheshi, Aomoriken, Japan

Pub. Date: December 18, 2015

Cite this paper:
Takahiro Wakasa. An Explicit upper Bound of the Argument of Dirichlet L-functions on the Generalized Riemann Hypothesis. Turkish Journal of Analysis and Number Theory. 2015; 3(5):140-144. doi: 10.12691/tjant-3-5-5

Abstract

We prove an explicit upper bound of the function , defined by the argument of Dirichlet L-functions attached to a primitive Dirichlet character (mod q > 1). An explicit upper bound of the function S(t), defined by the argument of the Riemann zeta-function, have been obtained by A. Fujii [1]. Our result is obtained by applying the idea of Fujii's result on S(t). The constant part of the explicit upper bound of in this paper does not depend on . Our proof does not cover the case q = 1 and indeed gives a better bound than the one of Fujii that covers the case q = 1.

Keywords:
Dirichlet L-functions

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  A. Fujii, An explicit estimate in the theory of the distribution of the zeros of the Riemann zeta function, Comment. Math. Univ. Sancti Pauli, 53, (2004), 85-114.
 
[2]  A. Selberg, Contributions to the theory of Dirichlet's L-function, Avh. Norske Vir. Akad. Oslo I:1, (1946), No. 3, 1-62.
 
[3]  A. Selberg, Collected Works, vol I, 1989, Springer.
 
[4]  E. C. Titchmarsh, The theory of the Riemann zeta-function, Second Edition; Revised by D. R. Heath-Brown. Clarendon Press Oxford, 1986.
 
[5]  E. Carneiro, V. Chandee, M. B. Milinovich, Bounding S(t) and S1(t) on the Riemann hypothesis, Math. Ann. Vol. 356, Issue 3 (2013), pp. 939-968.
 
[6]  E. Carneiro, V. Chandee, M. B. Milinovich, An note on the zeros of zeta and L-functions, Math. Z., 281 (2015), 315-332.
 
[7]  D. A. Goldston and S. Gonek, A note on S(t) and the zeros of the Riemann zeta funcion, Bull. London Math. Soc. 39, (2007), 482-486.