[1] | M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 9th printing, Washington, 1970. |
|
[2] | G. Allasia, C. Giordano, and J. Pečarić, Hadamard-type inequalities for (2r)-convex functions with applications, Atti Accad. Sci. Torino Cl. Sci. Fis Mat Natur. 133 (1999), 187-200. |
|
[3] | G. Allasia, C. Giordano, and J. Pečarić, Inequalities for the gamma function relating to asymptotic expasions, Math. Inequal. Appl. 5 (2002), no. 3, 543-555. |
|
[4] | H. Alzer, Sharp bounds for the ratio of q-gamma functions, Math. Nachr. 222 (2001), no. 1, 5-14. |
|
[5] | H. Alzer, Some gamma function inequalities, Math. Comp. 60 (1993), no. 201, 337-346. |
|
[6] | G. E. Andrews, R. A. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999. |
|
[7] | R. D. Atanassov and U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci. 41 (1988), no. 2, 21-23. |
|
[8] | N. Batir, On some properties of digamma and polygamma functions, J. Math. Anal. Appl. 328 (2007), no. 1, 452-465. |
|
[9] | N. Batir, Some gamma function inequalities, RGMIA Res. Rep. Coll. 9 (2006), no. 3, Art. 5. |
|
[10] | C. Berg, Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1 (2004), no. 4, 433-439. |
|
[11] | S. Bochner, Harmonic Analysis and the Theory of Probability, California Monographs in Mathematical Sciences, University of California Press, Berkeley and Los Angeles, 1960. |
|
[12] | J. Bustoz and M. E. H. Ismail, On gamma function inequalities, Math. Comp. 47 (1986), 659-667. |
|
[13] | P. S. Bullen, Handbook of Means and Their Inequalities, Mathematics and its Applications, Volume 560, Kluwer Academic Publishers, Dordrecht-Boston-London, 2003. |
|
[14] | G. T. Cargo, Comparable means and generalized convexity, J. Math. Anal. Appl. 12 (1965), 387-392. |
|
[15] | C.-P. Chen, On some inequalities for means and the second Gautschi-Kershaw’s inequality, RGMIA Res. Rep. Coll. 11 (2008), Suppl. Art. 6; Available online at http://rgmia.org/v11(E).php. |
|
[16] | C.-P. Chen and A.-J. Li, Monotonicity results of integral mean and application to extension of the second Gautschi-Kershaw’s inequality, RGMIA Res. Rep. Coll. 10 (2007), no. 4, Art. 2. |
|
[17] | C.-P. Chen and F. Qi, An alternative proof of monotonicity for the extended mean values, Aust. J. Math. Anal. Appl. 1 (2004), no. 2, Art. 11. |
|
[18] | J. Dubourdieu, Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes, Compositio Math. 7 (1939-40), 96-111. |
|
[19] | N. Elezović, C. Giordano, and J. Pečarić, The best bounds in Gautschi’s inequality, Math. Inequal. Appl. 3 (2000), 239-252. |
|
[20] | N. Elezović and J. Pečarić, Differential and integral f-means and applications to digamma function, Math. Inequal. Appl. 3 (2000), no. 2, 189-196. |
|
[21] | A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (Eds), Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953. |
|
[22] | W. Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. Phys. 38 (1959/60), 77-81. |
|
[23] | B.-N. Guo and F. Qi, A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72 (2010), no. 2, 21-30. |
|
[24] | B.-N. Guo and F. Qi, A simple proof of logarithmic convexity of extended mean values, Numer. Algorithms 52 (2009), no. 1, 89-92. |
|
[25] | B.-N. Guo and F. Qi, Monotonicity and logarithmic convexity relating to the volume of the unit ball, Optim. Lett. 7 (2013), no. 6, 1139-1153. |
|
[26] | B.-N. Guo and F. Qi, On the degree of the weighted geometric mean as a complete Bernstein function, Afr. Mat. 26 (2015), in press. |
|
[27] | B.-N. Guo and F. Qi, Refinements of lower bounds for polygamma functions, Proc. Amer. Math. Soc. 141 (2013), no. 3, 1007-1015. |
|
[28] | B.-N. Guo and F. Qi, Sharp inequalities for the psi function and harmonic numbers, Analysis (Berlin) 34 (2014), no. 2, 201-208. |
|
[29] | B.-N. Guo and F. Qi, The function [Trial mode]: Logarithmic convexity and applications to extended mean values, Filomat 25 (2011), no. 4, 63-73. |
|
[30] | B.-N. Guo, J.-L. Zhao, and F. Qi, A completely monotonic function involving the tri- and tetra-gamma functions, Math. Slovaca 63 (2013), no. 3, 469-478. |
|
[31] | G. Hämmerlin and K.-H. Hoffmann, Numerical Mathematics, Translated from the German by Larry Schumaker. Undergraduate Texts in Mathematics. Readings in Mathematics. Springer, New York, 1991. |
|
[32] | R. A. Horn, On infinitely divisible matrices, kernels and functions, Z. Wahrscheinlichkeitstheorie und Verw. Geb 8 (1967), 219-230. |
|
[33] | M. E. H. Ismail and M. E. Muldoon, Inequalities and monotonicity properties for gamma and q-gamma functions, in: R. V. M. Zahar (Ed.), Approximation and Computation: A Festschrift in Honour of Walter Gautschi, ISNM, 119, BirkhRauser, Basel, 1994, 309-323. |
|
[34] | M. E. H. Ismail and M. E. Muldoon, Inequalities and monotonicity properties for gamma and q-gamma functions, available online at http://arxiv.org/abs/1301.1749. |
|
[35] | D. Kershaw, Some extensions of W. Gautschi’s inequalities for the gamma function, Math. Comp. 41 (1983), 607-611. |
|
[36] | D. Kershaw, Upper and lower bounds for a ratio involving the gamma function, Anal. Appl. (Singap. ) 3 (2005), no. 3, 293-295. |
|
[37] | V. Krasniqi and F. Qi, Complete monotonicity of a function involving the [Trial mode]-psi function and alternative proofs, Glob. J. Math. Anal. 2 (2014), no. 3, 204-208. |
|
[38] | A. Laforgia and P. Natalini, Supplements to known monotonicity results and inequalities for the gamma and incomplete gamma functions, J. Inequal. Appl. 2006 (2006), Article ID 48727, 1-8. |
|
[39] | E. B. Leach and M. C. Sholander, Extended mean values II, J. Math. Anal. Appl. 92 (1983), 207-223. |
|
[40] | W.-H. Li, F. Qi, and B.-N. Guo, On proofs for monotonicity of a function involving the psi and exponential functions, Analysis (Munich) 33 (2013), no. 1, 45-50. |
|
[41] | A.-J. Li, W.-Z. Zhao, and C.-P. Chen, Logarithmically complete monotonicity properties for the ratio of gamma function, Adv. Stud. Contemp. Math. (Kyungshang) 13 (2006), no. 2, 183-191. |
|
[42] | E. Neuman and J. Sándor, On the Ky Fan inequality and related inequalities, II, Bull. Aust. Math. Soc. 72 (2005), no. 1, 87-107. |
|
[43] | C. Mortici, A continued fraction approximation of the gamma function, J. Math. Anal. Appl. 402 (2013), no. 2, 405-410. |
|
[44] | C. Mortici, A subtly analysis of Wilker inequality, Appl. Math. Comp. 231 (2014), 516-520. |
|
[45] | C. Mortici, Estimating gamma function by digamma function, Math. Comput. Modelling 52 (2010), no. 5-6, 942-946. |
|
[46] | C. Mortici, New approximation formulas for evaluating the ratio of gamma functions, Math. Comp. Modelling 52 (2010), no. 1-2, 425-433. |
|
[47] | C. Mortici, New approximations of the gamma function in terms of the digamma function, Appl. Math. Lett. 23 (2010), no. 3, 97-100. |
|
[48] | C. Mortici, New improvements of the Stirling formula, Appl. Math. Comput. 217 (2010), no. 2, 699-704. |
|
[49] | C. Mortici, Ramanujan formula for the generalized Stirling approximation, Appl. Math. Comp. 217 (2010), no. 6, 2579-2585. |
|
[50] | C. Mortici, The natural approach of Wilker-Cusa-Huygens inequalities, Math. Inequal. Appl. 14 (2011), no. 3, 535-541. |
|
[51] | J. Pečarić, F. Qi, V. Šimić and S.-L. Xu, Refinements and extensions of an inequality, III, J. Math. Anal. Appl. 227 (1998), no. 2, 439-448. |
|
[52] | F. Qi, A class of logarithmically completely monotonic functions and application to the best bounds in the second Gautschi-Kershaw’s inequality, J. Comput. Appl. Math. 224 (2009), no. 2, 538-543. |
|
[53] | F. Qi, A class of logarithmically completely monotonic functions and application to the best bounds in the second Gautschi-Kershaw’s inequality, RGMIA Res. Rep. Coll. 9 (2006), no. 4, Art. 11; Available online at http://rgmia.org/v9n4.php. |
|
[54] | F. Qi, A completely monotonic function related to the q-trigamma function, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 76 (2014), no. 1, 107-114. |
|
[55] | F. Qi, A new lower bound in the second Kershaw’s double inequality, J. Comput. Appl. Math. 214 (2008), no. 2, 610-616. |
|
[56] | F. Qi, A new lower bound in the second Kershaw’s double inequality, RGMIA Res. Rep. Coll. 10 (2007), no. 1, Art. 9; Available online at http://rgmia.org/v10n1.php. |
|
[57] | F. Qi, A note on Schur-convexity of extended mean values, RGMIA Res. Rep. Coll. 4 (2001), no. 4, Art. 4, 529-533. |
|
[58] | F. Qi, A note on Schur-convexity of extended mean values, Rocky Mountain J. Math. 35 (2005), no. 5, 1787-1793. |
|
[59] | F. Qi, Absolute monotonicity of a function involving the exponential function, Glob. J. Math. Anal. 2 (2014), no. 3, 184-203. |
|
[60] | F. Qi, An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind, J. Number Theory 144 (2014), 244-255. |
|
[61] | F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Article ID 493058, 84 pages. |
|
[62] | F. Qi, Bounds for the ratio of two gamma functions, RGMIA Res. Rep. Coll. 11 (2008), no. 3, Article 1. |
|
[63] | F. Qi, Bounds for the ratio of two gamma functions—From Gautschi’s and Kershaw’s inequalities to completely monotonic functions, available online at http://arxiv.org/abs/0904.1049. |
|
[64] | F. Qi, Bounds for the ratio of two gamma functions—From Wendel’s and related inequalities to logarithmically completely monotonic functions, available online at http://arxiv.org/abs/0904.1048. |
|
[65] | F. Qi, Bounds for the ratio of two gamma functions—From Wendel’s limit to Elezović-Giordano-Pečarić’s theorem, available online at http://arxiv.org/abs/0902.2514. |
|
[66] | F. Qi, Certain logarithmically N-alternating monotonic functions involving gamma and q-gamma functions, Nonlinear Funct. Anal. Appl. 12 (2007), no. 4, 675-685. |
|
[67] | F. Qi, Certain logarithmically N-alternating monotonic functions involving gamma and Q-gamma functions, RGMIA Res. Rep. Coll. 8 (2005), no. 3, Art. 5, 413-422. |
|
[68] | F. Qi, Complete monotonicity of functions involving the q-trigamma and q-tetragamma functions, Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Math. RACSAM. 109 (2015). |
|
[69] | F. Qi, Complete monotonicity of logarithmic mean, RGMIA Res. Rep. Coll. 10 (2007), no. 1, Art. 18; Available online at http://rgmia.org/v10n1.html. |
|
[70] | F. Qi, Generalized abstracted mean values, J. Inequal. Pure Appl. Math. 1 (2000), no. 1, Art. 4; Available online at http://www.emis.de/journals/JIPAM/article97.html. |
|
[71] | F. Qi, Generalized abstracted mean values, RGMIA Res. Rep. Coll. 2 (1999), no. 5, Art. 4, 633-642. |
|
[72] | F. Qi, Generalized weighted mean values with two parameters, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998), no. 1978, 2723-2732. |
|
[73] | F. Qi, Integral representations and complete monotonicity related to the remainder of Burnside’s formula for the gamma function, J. Comput. Appl. Math. 268 (2014), 155-167. |
|
[74] | F. Qi, Integral representations and properties of Stirling numbers of the first kind, J. Number Theory 133 (2013), no. 7, 2307-2319. |
|
[75] | F. Qi, Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities, Filomat 27 (2013), no. 4, 601-604. |
|
[76] | F. Qi, Logarithmic convexity of extended mean values, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1787-1796. |
|
[77] | F. Qi, Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions, Math. Inequal. Appl. 18 (2015), in press; Available online at http://arxiv.org/abs/1302.6731. |
|
[78] | F. Qi, Refinements, extensions and generalizations of the second Kershaw’s double inequality, RGMIA Res. Rep. Coll. 10 (2007), no. 2, Art. 8; Available online at http://rgmia.org/v10n2.php. |
|
[79] | F. Qi, The extended mean values: Definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Mat. Educ. 5 (2003), no. 3, 63-90. |
|
[80] | F. Qi, The extended mean values: Definition, properties, monotonicities, comparison, convexities, generalizations, and applications, RGMIA Res. Rep. Coll. 5 (2002), no. 1, Art. 5, 57-80. |
|
[81] | F. Qi and C. Berg, Complete monotonicity of a difference between the exponential and trigamma functions and properties related to a modified Bessel function, Mediterr. J. Math. 10 (2013), no. 4, 1685-1696. |
|
[82] | F. Qi, P. Cerone, and S. S. Dragomir, Complete monotonicity of a function involving the divided difference of psi functions, Bull. Aust. Math. Soc. 88 (2013), no. 2, 309-319. |
|
[83] | F. Qi and C.-P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl. 296 (2004), no. 2, 603-607. |
|
[84] | F. Qi and S.-X. Chen, Complete monotonicity of the logarithmic mean, Math. Inequal. Appl. 10 (2007), no. 4, 799-804. |
|
[85] | F. Qi and B.-N. Guo, A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw’s double inequality, J. Comput. Appl. Math. 212 (2008), no. 2, 444-456. |
|
[86] | F. Qi and B.-N. Guo, A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw’s double inequality, RGMIA Res. Rep. Coll. 10 (2007), no. 2, Art. 5; Available online at http://rgmia.org/v10n2.php. |
|
[87] | F. Qi and B.-N. Guo, A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function, available online at http://arxiv.org/abs/0903.5038. |
|
[88] | F. Qi and B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 8, 63-72. |
|
[89] | F. Qi and B.-N. Guo, Some logarithmically completely monotonic functions related to the gamma function, available online at http://arxiv.org/abs/0903.5123. |
|
[90] | F. Qi and B.-N. Guo, Some logarithmically completely monotonic functions related to the gamma function, J. Korean Math. Soc. 47 (2010), no. 6, 1283-1297. |
|
[91] | F. Qi and B.-N. Guo, The function (bx-ax)/x: Logarithmic convexity and applications to extended mean values, available online at http://arxiv.org/abs/0903.1203. |
|
[92] | F. Qi, B.-N. Guo, and C.-P. Chen, Some completely monotonic functions involving the gamma and polygamma functions, J. Aust. Math. Soc. 80 (2006), 81-88. |
|
[93] | F. Qi, B.-N. Guo, and C.-P. Chen, Some completely monotonic functions involving the gamma and polygamma functions, RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 5, 31-36. |
|
[94] | F. Qi, B.-N. Guo, and C.-P. Chen, The best bounds in Gautschi-Kershaw inequalities, Math. Inequal. Appl. 9 (2006), no. 3, 427-436. |
|
[95] | F. Qi, B.-N. Guo, and C.-P. Chen, The best bounds in Gautschi-Kershaw inequalities, RGMIA Res. Rep. Coll. 8 (2005), no. 2, Art. 17; Available online at http://rgmia.org/v8n2.php. |
|
[96] | F. Qi and S. Guo, Inequalities for the incomplete gamma and related functions, Math. Inequal. Appl. 2 (1999), no. 1, 47-53. |
|
[97] | F. Qi and S. Guo, New upper bounds in the second Kershaw’s double inequality and its generalizations, RGMIA Res. Rep. Coll. 10 (2007), no. 2, Art. 1; Available online at http://rgmia.org/v10n2.php. |
|
[98] | F. Qi, S. Guo, and S.-X. Chen, A new upper bound in the second Kershaw’s double inequality and its generalizations, J. Comput. Appl. Math. 220 (2008), no. 1-2, 111-118. |
|
[99] | F. Qi, S. Guo, and B.-N. Guo, Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math. 233 (2010), no. 9, 2149-2160. |
|
[100] | F. Qi, S. Guo, and B.-N. Guo, Complete monotonicity of some functions involving polygamma functions, available online at http://arxiv.org/abs/0905.2732. |
|
[101] | F. Qi, S. Guo, and B.-N. Guo, Note on a class of completely monotonic functions involving the polygamma functions, RGMIA Res. Rep. Coll. 10 (2007), no. 1, Art. 5; Available online at http://rgmia.org/v10n1.php. |
|
[102] | F. Qi, X.-A. Li, and S.-X. Chen, Refinements, extensions and generalizations of the second Kershaw’s double inequality, Math. Inequal. Appl. 11 (2008), no. 3, 457-465 |
|
[103] | F. Qi, W. Li, and B.-N. Guo, Generalizations of a theorem of I. Schur, RGMIA Res. Rep. Coll. 9 (2006), no. 3, Art. 15; Available online at http://rgmia.org/v9n3.php. |
|
[104] | F. Qi and Q.-M. Luo, A simple proof of monotonicity for extended mean values, J. Math. Anal. Appl. 224 (1998), no. 2, 356-359. |
|
[105] | F. Qi and Q.-M. Luo, Bounds for the ratio of two gamma functions—From Wendel’s and related inequalities to logarithmically completely monotonic functions, Banach J. Math. Anal. 6 (2012), no. 2, 132-158. |
|
[106] | F. Qi and Q.-M. Luo, Bounds for the ratio of two gamma functions: from Wendel’s asymptotic relation to Elezović-Giordano-Pečarić’s theorem, J. Inequal. Appl. 2013, 2013:542, 20 pages. |
|
[107] | F. Qi and Q.-M. Luo, Refinements and extensions of an inequality, Mathematics and Informatics Quarterly 9 (1999), no. 1, 23-25. |
|
[108] | F. Qi, Q.-M. Luo, and B.-N. Guo, Complete monotonicity of a function involving the divided difference of digamma functions, Sci. China Math. 56 (2013), no. 11, 2315-2325. |
|
[109] | F. Qi, Q.-M. Luo, and B.-N. Guo, The function (bx-ax)/x: Ratio’s properties, In: Analytic Number Theory, Approximation Theory, and Special Functions, G. V. Milovanović and M. Th. Rassias (Eds), Springer, 2014, pp. 485-494. |
|
[110] | F. Qi and J.-Q. Mei, Some inequalities of the incomplete gamma and related functions, Z. Anal. Anwendungen 18 (1999), no. 3, 793-799. |
|
[111] | F. Qi and S.-H. Wang, Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions, Glob. J. Math. Anal. 2 (2014), no. 3, 91sh-97. |
|
[112] | F. Qi and S.-L. Xu, Refinements and extensions of an inequality, II, J. Math. Anal. Appl. 211 (1997), 616-620. |
|
[113] | F. Qi and S.-L. Xu, The function (bx-ax)/x: Inequalities and properties, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3355-3359. |
|
[114] | F. Qi, S.-L. Xu, and L. Debnath, A new proof of monotonicity for extended mean values, Intern. J. Math. Math. Sci. 22 (1999), no. 2, 417-421. |
|
[115] | F. Qi and S.-Q. Zhang, Note on monotonicity of generalized weighted mean values, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1989, 3259-3260. |
|
[116] | F. Qi and X.-J. Zhang, Complete monotonicity of a difference between the exponential and trigamma functions, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 21 (2014), no. 2, 141-145. |
|
[117] | H. van Haeringen, Completely monotonic and related functions, J. Math. Anal. Appl. 204 (1996), no. 2, 389-408. |
|
[118] | D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946. |
|
[119] | S.-L. Zhang, C.-P. Chen, and F. Qi, Another proof of monotonicity for the extended mean values, Tamkang J. Math. 37 (2006), no. 3, 207-209. |
|
[120] | X.-M. Zhang and Y.-M. Chu, An inequality involving the Gamma function and the psi function, Int. J. Mod. Math. 3 (2008), no. 1, 67-73. |
|
[121] | X.-M. Zhang, T.-Q. Xu, and L.-B. Situ, Geometric convexity of a function involving gamma function and applications to inequality theory, J. Inequal. Pure Appl. Math. 8 (2007), no. 1, Art. 17. |
|