[1] | Appell, P.; Kampé de Fériet, J., Fonctions hypergéométriques. Polynômes d’Hermite, Gauthier-Villars, Paris, 1926. |
|
[2] | Bell, E. T. Exponential polynomials. Ann. Math. 1934, 35, 258-277. |
|
[3] | Bouroubi, S.; Abbas, M. New identities for Bell’s polynomials: New approaches. Rostock. Math. Kolloq. 2006, 61, 49-55. |
|
[4] | Carlitz, L. Some remarks on the Bell numbers. Fibonacci Quart. 1980, 18, 66-73. |
|
[5] | Duran, U.; Acikgoz, M. Unified degenerate central Bell polynomials. J. Math. Anal. 2020, 11(2), 18-33. |
|
[6] | Duran, U.; Acikgoz, M. On generalized degenerate Gould-Hopper based fully degenerate Bell polynomials. Accepted for publication in J. Math. Comp. Sci. 2020. |
|
[7] | Kim, T.; Kim, D.S. A note on central Bell numbers and polynomials. Russ. J. Math. Phys. 27, 1, 2020, 76-81. |
|
[8] | Kim. T.; Kim, D.S. Degenerate central Bell numbers and polynomials. RACSAM. 2019. |
|
[9] | Kim. T.; Kim, D.S. On degenerate Bell numbers and polynomials. RACSAM. 2017, 111, 435-446. |
|
[10] | Kim, D.S.; Dolgy, D.V.; Kim, T.; Kim, D. Extended degenerate r-central factorial numbers of the second kind and extended degenerate r-central bell polynomials. Symmetry. 2019, 11, 595. |
|
[11] | Mihoubi, M. Bell polynomials and binomial type sequences. Discrete Math. 2008, 308, 2450-2459. |
|
[12] | Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 1975, 15, 51-88. |
|
[13] | Carlitz, L. A degenerate Staudt-Clausen theorem. Arch Math (Basel). 1956, 7, 28-33. |
|
[14] | Duran, U.; Sadjang, P.N. On Gould-Hopper-based fully degenerate poly-Bernoulli polynomials with a q-parameter, Mathematics, 2019, 7, 121. |
|
[15] | Howard, F.T. Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 1996, 162, 175-185. |
|
[16] | Khan, W. A. A note on degenerate Hermite poly-Bernoulli numbers and polynomials. J. Class. Anal. 2016, 8, 65-76. |
|
[17] | Kim. T.; Kim, D.S. Degenerate Bernstein polynomials. RACSAM. 2018. |
|
[18] | Kim, D.S.; Kim, T.; Mansour, T.; Seo, J.-J. Degenerate Mittag-Leffer polynomials. Appl. Math. Comput. 2016, 274, 258-266. |
|
[19] | Kim. T.; Kim, D.S. Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys. 2017, 24, 241-248. |
|
[20] | Kim, T.; Kim, D.S.; Jang, G.-W.; Kwon, J. A note on degenerate Bernstein polynomials. J. Inequal. Appl. 2019, 2019:129. |
|
[21] | Kim, W.J.; Kim, D.S.; Kim, H.Y.; Kim, T. Some identities of degenerate Euler polynomials associated with degenerate Bernstein polynomials. J. Inequal. Appl. 2019, 2019:160. |
|
[22] | Kwon, H.I.; Kim, T.; Seo, J.-J. A note on degenerate Changhee numbers and polynomials. Proc. Jangjeon Math. Soc. 2015, 18, 295-305. |
|
[23] | Lim, D. Some identities of degenerate Genocchi polynomials. Bull. Korean Math. Soc. 2016, 53, 569-579. |
|
[24] | Duran, U.; Acikgoz, M.; Araci, S. Hermite based poly-Bernoulli polynomials with a q-parameter. Adv. Stud. Contemp. Math. 2018, 28, 285-296. |
|
[25] | Dattoli, G.; Lorenzutta S.; Cesarano, C. Finite sums and generalized forms of Bernoulli polynomials, Rend. Math. Appl. 1999, 19, 385-391. |
|
[26] | Srivastava, H.M.; Choi, J. Zeta and q-Zeta functions and associated series and integrals; Elsevier Science Publishers: msterdam, The Netherlands, 2012, 674 p. |
|
[27] | Rainville E.D. Special Functions, The Macmillan Company, New York, 1960. |
|
[28] | Araci, S.; Khan, W.A.; Acikgoz, M.; Özel, C.; Kumam, P. A new generalization of Apostol type Hermite-Genocchi polynomials and its applications, SpringerPlus. 2016, 5:860. |
|
[29] | Kurt, B.; Simsek, Y. On the Hermite based Genocchi polynomials. Adv. Stud. Contemp. Math., 2013, 23, 13-17. |
|
[30] | Pathan, M.A. A new class of generalized Hermite-Bernoulli polynomials. Georgian Math. J. 2012, 19, 559-573. |
|
[31] | Widder, D.V. The Heat Equation, Academic Press, New York, 1975. |
|
[32] | Acikgoz, M.; Araci, S. On the generating function for Bernstein polynomials. AIP Conference Proceedings, 1281:1, 2010, 1141-1143. |
|
[33] | Araci, S.; Riyasat, M.; Khan, S.,; Wani, S.A. Some uni.ed formulas involving generalized-Apostol-type-Gould-Hopper polynomials and multiple power sums. J. Math. Comp. Sci. 2019, 19, 2, 97-115. |
|
[34] | Ozarslan, M.A. Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials, Adv. Difference Equ. 2013, 2013:116. |
|
[35] | Cheikh Y.B., Zaghouani A. Some discrete d-orthogonal polynomials sets. J. Comput. Appl. Math. 2003, 156, 253-263. |
|