[1] | Banat IM, Nigam P, Singh D, Marchant R. Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 1996; 58: 217-27. |
|
[2] | Chen B-Y. Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochem 2002; 38: 437-46. |
|
[3] | Keck A, Klein J, Kudlich M, Stolz A, Knackmuss H-J, Mattes R. Reduction of azo dyes by redox mediators originating in the naphthale- nesulfonic acid degradation pathway Sphingomonas sp. Strain BN6. Appl Environ Microbiol 1997; 63: 3684-90. |
|
[4] | Maymard Jr CW. In: Kent JA, editor. Riegel’s handbook of industrial chemistry. New York: Van Nostrand Reinhold; 1983. p. 809-61. |
|
[5] | Zollinger H. Color chemistry—syntheses, properties and applications of organic dyes and pigments New York: VCH Publishers; 1987. pp. 92-102. |
|
[6] | Heiss GS, Gowan B, Dabbs ER. Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes. FEMS Microbiol Lett 1992; 99: 221-6. |
|
[7] | Chung K-T, Stevens Jr SE. Degradation of azo dyes by environmental microorganisms and helminthes. Environ Toxicol Chem 1993; 12: 2121-32. |
|
[8] | Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 2001; 56: 69-80. |
|
[9] | Zimmermann T, Kulla HG, Leisinger T. Properties of purified orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 1982; 129: 197-203. |
|
[10] | Hu TL. Decolourization of reactive azo dyes by transformation with Pseudomonas luteola. Bioresour Technol 1994; 49: 47-51. |
|
[11] | Chang J-S, Chou C, Lin Y-C, Lin P-J, Ho J-Y, Hu T-L. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res 2001; 35: 2841-50. |
|
[12] | Chang J-S, Lin Y-C. Fed-batch bioreactor strategies for microbial decolorization of azo dyes using a Pseudomonas luteola strain. Biotechnol Prog 2000; 16: 979-85. |
|
[13] | HaugW, Schmidt A, Nortemann B, Hempel DC, Stolz A, Knackmuss H-J. Mineralization of the sulfonated azo dye mordant yellow 3 by 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Appl Environ Microbiol 1991; 57: 3144-9. |
|
[14] | Seshadri S, Bishop PL, Agha AM. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manage 1994; 14: 127-37. |
|
[15] | Flores ER, Luijten M, Donlon BA, Lettinga G, Field JA. Complete biodegradation of the azo dye azodisalicylate under anaerobic conditions. Environ Sci Technol 1997; 31: 2098-103. |
|
[16] | Glenn JK, Gold MH. Decolorization of several polymeric dyes by the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 1983; 45: 1741-7. |
|
[17] | Yang F, Yu J. Development of a bioreactor system using an immobilized white rot fungus for decolourization, Part II: Continuous decolourization tests. Bioprocess Eng 1996; 16: 9-11. |
|
[18] | Palleria S, Chambers RP. Characterization of a Ca-alginate-immobilized Trametes versicolor bioreactor for decolourization and AOX reduction of paper mill effluents. Bioresour Technol 1997; 60: 1-8. |
|
[19] | Zhang F-M, Knapp JS, Tapley KN. Development of bioreactor systems for decolorization of orange II using white rot fungus. Enzyme Microb Technol 1999; 24: 48-53. |
|
[20] | Coughlin MF, Kinkle BK, Tepper A, Bishop PL. Characterization of aerobic azo dye-degrading bacteria and their activity in biofilms. Water Sci Technol 1997; 36: 215-20. |
|
[21] | Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 2001; 56: 69-80. |
|
[22] | Russ R, Rau J, Stolz A. The function of cytoplasmic flavin reductases in the bacterial reduction of azo dyes. Appl Environ Microbiol 2000; 66: 1429-34. |
|
[23] | Morin PL. Communities. In: Community ecology. Malden, MA, USA: Blackwell Science Inc.; 1999. pp. 3-28 [chapter 1]. |
|
[24] | Mills JS, Soule ME, Doak DF. The Keystone-species concept in ecology and conservation. BioScience 1993; 43: 219-24. |
|
[25] | Williams AC, McCarthy BC. A new index of interspecific competition for replacement and additive designs. Ecol Res 2001; 16: 29-40. |
|
[26] | Akey WC, Jurik TW, Dekker J. A replacement series evaluation of competition between velvetleaf (Abutilon theophrasti) and soybean (Glycine max). Weed Res 1991; 31: 63-72. |
|
[27] | Mark W, Lindow SE. Ecological similarity and coexistence of epiphytic Ice-nucleating (Ice+) Pseudomonas syringae strain and a Non-Ice-nucleating (Ice-) biological control agent. Appl Environ Microbiol 1994; 60: 3128-37. |
|
[28] | Pianka ER. Competition and the ecological niche. In: Evolutionary ecology4th ed., New York: Harper Collins Publication Inc.; 1988. pp. 213-65 [chapter 11]. |
|
[29] | Edwards C. Some problems posed by natural environments for monitoring microorganisms.In: Environmental monitoring of bacteria. Edwards C, editor. Methods in biotechnology, vol. 12. Totowa, NJ: Human Press; 1999. p. 1-13 [chapter 1]. |
|
[30] | Duetz WA, deJong C, Williams PA, Van Andel JG. Competition in chemostat culture between Pseudomonas strains that use different pathways for the degradation of toluene. Appl Environ Microb 1994; 60:2858-63. |
|
[31] | Chen B-Y, Chang J-S, Chen S-Y. Bacterial species diversity and dye decolorization of a two-species mixed consortium. Environ Eng Sci 2003; 20: 337-45. |
|
[32] | Chen B-Y, Chang J-S, Chen S-Y. Bacterial decolourization enhancement using a constructed mixed consortium. J Chin Inst Chem Eng 2003; 34: 513-24. |
|
[33] | Chen B-Y, Chen Y-W, Wu D-J, Cheng Y-C. Metal toxicity assessment upon indigenous Thiobacillus thiooxidans BC1. Environ Eng Sci 2003; 20: 375-85. |
|
[34] | McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF. Microbial decolourisation and degradation of textile dyes. Appl Microbiol Bitechnol 2001; 56: 81-7. |
|
[35] | Chang J-S, Chen B-Y, Lin Y-S. Stimulation of bacterial decolorization of an azo dye by extracellular metabolites from Escherichia coli strain NO3. Bioresour Technol 2004; 91: 243-8. |
|
[36] | Chen B-Y, Lim HC. Bioreactor studies on temperature induction of the Qmutant of bacteriophage l in Escherichia coli. J Biotechnol 1996; 51: 1-20. |
|
[37] | Sen R, Swaminathan T. Application of response-surface methodology to evaluate the optimum environmental conditions for the enhanced production of surfactin. Appl Microbiol Biotechnol 1997; 47: 358-63. |
|
[38] | Shannon CE, Weaver W. The mathematical theory of communication Urbana: University of Illinois Press; 1949. |
|
[39] | Lin S-K. Molecular diversity assesment: logarithmic relations of information and species diversity and logarithmic relations of entropy and indistinguishability after rejection of Gibbs paradox entropy of mixing. Molecules 1996; 1: 57-67. |
|
[40] | Chen B-Y, Induction Evolution. Entropy of bacteriophage lQ_ mutant in Escherichia coli. J Chin Inst Chem Eng 2001; 32: 81-7. |
|
[41] | Williams GC. Design for what?In: Plan and purpose in nature—the limits of Darwinian evolution, science masters series. London, Great Britain: Phoenix; 1996. pp. 55-82. |
|
[42] | Dover G. The ignorant gene. In: Dear Mr Darwin—letters on the evolution of life and human nature. London, Great Britain:Weidenfeld & Nicolson; 2000. pp. 49-66. |
|