World Journal of Organic Chemistry
ISSN (Print): 2372-2150 ISSN (Online): 2372-2169 Website: https://www.sciepub.com/journal/wjoc Editor-in-chief: Subrata Shaw
Open Access
Journal Browser
Go
World Journal of Organic Chemistry. 2021, 9(1), 1-5
DOI: 10.12691/wjoc-9-1-1
Open AccessArticle

Trisubstituted Triptycenes: Toward the Preparation of Three-Dimensional Dendrimers

Alfredo Mellace1 and James E. Hanson1,

1Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey, USA

Pub. Date: May 27, 2021

Cite this paper:
Alfredo Mellace and James E. Hanson. Trisubstituted Triptycenes: Toward the Preparation of Three-Dimensional Dendrimers. World Journal of Organic Chemistry. 2021; 9(1):1-5. doi: 10.12691/wjoc-9-1-1

Abstract

A synthesis of benzyl trisubstituted triptycenes is described. These triptycenes are precursors for producing a first generation (G1) poly(triptycylether) dendrimer, a derivative of known poly(arylether) dendrimers. The molecule necessary for the further elaboration into the eventual dendrimer is a carboxylic acid ester triptycene terminated with two ether substituents on another ring; the zero generation (G0). The synthesis begins with formation of the Diels-Alder adduct of benzoquinone and methyl 2-anthroate. This adduct is aromatized under basic conditions and the resulting anion trapped with a benzyl halide as an electrophile to form the trisubstituted triptycene. Access to the trisubstituted system is obtained through a highly improved, efficient and chromatography free preparation of anthracene derivatives, mainly methyl 2-anthroate.

Keywords:
triptycenes dendrimers monodendrons

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Bartlett, P.D., Ryan, M.J.; Cohen, S.G. “Triptycene (9,10-o-Benzenoanthracene)”, J. Am. Chem. Soc., 64, 2649-2653, 1942.
 
[2]  Streitwieser, A. Jr.; Caldwell, R.A.; Young, W.R. “Acidity of Hydrocarbons. XV. Relative Stabilities of Triphenylmethyl and Bridgehead Triptycyl Carbanions” J. Am. Chem. Soc., 86, 3578-3579, 1964.
 
[3]  Streitwieser, A. Jr.; Ziegler, G.R. “Acidity of Hydrocarbons. XXXI. Kinetic Acidities of the Hydrogens in Triptycene toward Cesium Cyclohexylamide” J. Am. Chem. Soc., 91, 5081-5084, 1969.
 
[4]  Yamamoto, G.; Higuchi, H.; Yonebayashi, M.; Nabeta, Y.; Ojima, J. “Stereodynamics of N,N-dialkyl-9-triptycylamines” Tetra-hedron, 52, 12409-12420, 1996.
 
[5]  Yang, J.S.; Swager, T.M. “Porous Shape Persistent Polymer Films: An Approach to TNT Sensory Materials” J. Am. Chem. Soc. 120, 5321-5322, 1998.
 
[6]  Yang, J.S.; Swager T.M. “Fluorescent Polymer Films as TNT Chemosensors: Electronic and Structural Effects” J. Am. Chem. Soc. 120, 11864-11873, 1998.
 
[7]  Perchellet, E.M.; Magill, M.J.; Huang, X.; Brantis, C.E.; Hua, D.H.; Perchellet, J.P. “Triptycenes; a novel synthetic class of bifunctional anticancer drugs that inhibit nucleoside transport, induce DNA cleavage and decrease the viability of leukemic cells in the nanomolar range in vitroAnti-Cancer Drugs, 10, 749-766, 1999.
 
[8]  Wiehe, A.; Senge, M.O.; Schafer, A.; Seck, M.; Tannert, S.; Kurreck, H.; Roder, B. “Electron Donor-Acceptor Compounds: exploiting the triptycene geometry for the synthesis of porphyrin quinone diads, triads and a tetrad” Tetrahedron, 57, 10089-10110, 2001.
 
[9]  Kitaguchi, N. “Effects of Substituents and Solvents on the Electronic Spectra of 9,10-Dihydro-9,10-o-benzenoanthracene-1,4-diones: Intramolecular Charge Transfer” Bull Chem. Soc. Jpn. 62, 800-807, 1989.
 
[10]  Wittig, G.; Niethammer, K. “Dehydrobenzol und Acridin” Chem. Ber. 93, 944-950, 1960.
 
[11]  Chun, Z.; Ying, L.; Buyi, L.; Bien, T.; Chuan-Feng, C.; Hui-Bi, X.; Xiang-Liang, Y. Triptycene-Based Microporous Polymers: Synthesis and Their Gas Storage Properties” ACS Macro Lett. 1, 190-193, 2012.
 
[12]  Munakata, M.; Wu, L.P.; Sugimoto, K.; Kuroda-Sowa, T.;Maekawa, M.; Suenaga, Y.; Maeno N.; Fujita, M. “Silver(I) Complex Assemblies with Nonplanar Aromatic Compounds” Inor. Chem. 38, 5674-5680, 1999.
 
[13]  Xu, X.D.; Yang, H.B.; Zheng, Y.R.; Ghosh, K.; Lyndon, M.M.; Muddiman, D.C.; Stang, P.J. “Self-Assembly of Dendritic Tris(crown ether) Hexagons and Their Complexation with Dibenzylammonium Cations” J. Org. Chem. 75, 7373-7380, 2010.
 
[14]  Shimizu, Y.; Naito, T.; Ogura, F.; Nakagawa, M. “Optically Active Triptycenes VI. Optical Resolution of 2,5-dihydroxy-8-methoxycarbonyl triptycene and Absolute Configuration of 2,5-dihydroxy-8-methoxycarbonyl triptycene” Bull. Chem. Soc. Jpn. 46, 1520-1525, 1973.
 
[15]  Newkome, G.R.; Moorefield C.N.; Vogtle, F. Dendrimers and Dendrons, Wiley-VCH Verlag GmbH, Germany, 2001.
 
[16]  Matthews, O.A.; Shipway, A.N.; Stoddart, J.F. “Dendrimers: Branching out from curiosities to new technologies” Prog. Polym. Sci. 23, 1-56, 1998.
 
[17]  Rathore, R.; Kochi, J.K. “Isolation of Novel Radical Cations from Hydroquinone Ethers. Conformational Transition of the Methoxy Group on Electron Transfer” J. Org. Chem. 60, 4399-4411, 1995.
 
[18]  Arjunan, P.; Berlin, K.D. “An Improved Synthesis of 2-Anthraldehyde” Organic Preparations and Procedures, 13, 368-371, 1981.
 
[19]  Yamazaki, S. “Chromium (VI) Oxide-Catalyzed Benzylic Oxidation with Periodic Acid” Org. Lett. 1, 2129-2132, 1999.
 
[20]  The same reagents were used except that the concentrated ammonium hydroxide solution was brought to reflux rather than being maintained at 70°C.
 
[21]  The reaction was conducted using methanol instead of ethanol, along with benzene as a co-solvent to remove water as an azeotrope, pushing the reaction to completion.
 
[22]  Werner, T.C.; Lyon, D.B. “Empirical measures of solvent effects on the fluorescence energy of methyl anthroates” J. Phys. Chem. 86, 933-939, 1982.
 
[23]  Corey, E.J.; Kim, C.U. “A method for selective conversion of allylic and benzylic alcohols to halides under neutral conditions” Tet. Lett. 42, 4339-4342, 1972.