World Journal of Environmental Engineering
ISSN (Print): 2372-3076 ISSN (Online): 2372-3084 Website: https://www.sciepub.com/journal/wjee Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
World Journal of Environmental Engineering. 2017, 5(1), 1-6
DOI: 10.12691/wjee-5-1-1
Open AccessArticle

Detoxification of Diclofenac - A Comparison between Oxidative and Reductive Degradation Processes

A. Habekost1,

1Department of Chemistry, University of Education Ludwigsburg, Reuteallee, Ludwigsburg, Germany

Pub. Date: August 04, 2017

Cite this paper:
A. Habekost. Detoxification of Diclofenac - A Comparison between Oxidative and Reductive Degradation Processes. World Journal of Environmental Engineering. 2017; 5(1):1-6. doi: 10.12691/wjee-5-1-1

Abstract

Reductive degradation / dehalogenation of diclofenac (DCF) — one of the most commonly used anti-inflammatories — occurs efficiently at moderately elevated temperatures between 300°C and 500°C with zero valent iron (iron powder) in a nitrogen atmosphere. The proton donors tested were ethanol and water. The observed production of phenol and cresol and other dehalogenation products indicates that the reaction is not simple pyrolysis, but is rather a reduction. No halogenated organic products were observed. In contrast, oxidative degradation of DCF — for example, electrochemical oxidation or oxidation with ozone or H2O2 — led to predominantly chlorinated products. All products resulted were tested via gas chromatography-mass spectrometry (GC-MS).

Keywords:
reductive dehalogenation diclofenac zero-valent iron

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  M.S.M. Quintino, K. Araki, L. Angnes, Amperometric quantification of sodium metabisulfite in pharmaceutical formulations utilizing tetraruthenated porphyrin film modified electrodes and batch injection analysis”, Talanta, vol. 68, pp. 1281-1286, 2006.
 
[2]  https://www.drugs.com/diclofenac.html, 6.2.17.
 
[3]  https://de.wikipedia.org/wiki/Diclofenac, 9.2.17.
 
[4]  H. Faber, H. Lutze, P.L. Lareo, L. Frensemeier, M. Vogel, T.C. Schmidt, U. Karst, „Liquid chromatography/mass spectrometry to study oxidative degradation of environmentally relevant pharmaceuticals by electrochemistry and ozonisation”. J. Chromatogr. A, vol. 1343, pp. 152-159, 2014.
 
[5]  M. Klavarioti, D., Mantzavinos, D. Kassinos, “Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes”, Envir. Intern., vol. 35, pp. 402-417, 2009.
 
[6]  C. Comninellis, A. Kapalka, S. Malato, SA. Parsons, I. Poulios, D. Mantzavinos, D. “Advanced oxidation processes for water treatment: advances and trends for R&D”, J. Chem. Technol. Biotechnol., vol. 83, pp. 769-776, 2008.
 
[7]  I. Sires, C. Arias, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodriguez, “Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton”, Chemosphere, vol. 66, pp. 1660-1669, 2007.
 
[8]  A. Giannis, M. Kalaitzakis, E. Diamadopoulos, E., “Electrochemical treatment of olive mill wastewater” J. Chem. Technol. Biotechnol., vol. 82, pp. 663-671, 2007.
 
[9]  M.M. Cid-Ceròn, D.S. Guzman-Hernandez, M.T. Ramirez-Silva, A. Galano, M. Romero-Romo, M. Palomar-Pardave, “New insight on the kinetics and mechanism of the electrochemical oxidation of diclofenac in neutral aqueous medium”. Electrochim. Acta, vol. 199, pp. 92-98, 2016.
 
[10]  H. Tekin, O. Bilkay, S.S. Ataberk, T.H. Balta, I.H. Ceribasim, F.D. Sanin, “Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater”. J. Hazard Mater., vol. 136, pp. 258-265, 2006.
 
[11]  P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu, “Comparison of various advanced oxidation processes for the degradation of 4-chloro-2nitrophenol”. J. Hazard Mater., vol. 149, pp. 609-614, 2007.
 
[12]  M. Ravina, L. Campanella, J. Kiwi, “Accelerated mineralization of the drug diclofenac via Fenton reactions in a concentric photo-reactor”. Wat. Res., vol. 36, pp. 3553-3560, 2002.
 
[13]  L.A. Perez-Estrada, S. Malato, W. Gernjak, A. Agueram, E.M. Thurman, I. Ferrer, “Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway”, Environ. Sci. Technol., vol. 39, pp. 8300-8306, 2005.
 
[14]  H. Shemer, Y.K. Kunukcu, K.G. Linden, K.G., „Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes”. Chemosphere, vol. 63, pp. 269-276, 2006.
 
[15]  R. Andreozzi, V. Caprio, A. Insola, R. Marotta, “Advanced oxidation processes (AOP) for water purification and recovery”, Catal. Today, vol. 53, pp. 51-59, 1999.
 
[16]  A. Chatzitakis, C. Berberidou, I. Paspaltsis, G. Kyriakou, T. Sklaviadis, I. Poulios, “Photocatalytic degradation and drug activity reduction of chloramphenicol”, Wat. Res., vol. 42, pp. 386-394, 2008.
 
[17]  T.E. Doll, F.H. Frimmel, „Fate of pharmaceuticals-photodegradation by simulated solar UV light”, Chemosphere, vol. 52, pp. 1757-1769, 2003.
 
[18]  X. Cheng, Q. Cheng, X. Deng, P. Wang, H. Liu, „A facile and novel strategy to synthesise reduced TiO2 nanotubes photoelectrode for photoelectrocatalytic degradation of diclofenac”. Chemosphere, vol. 144, pp. 888-894, 2016.
 
[19]  M.N. Abellan, M.N., Bayarri, B., Gimenez, J., Costa, J., “Photocatalytic degradation of sulfamethox-azole in aqueous suspension of TiO2 Appl. Catal. B Environ., vol. 74, pp. 233-241, 2007.
 
[20]  A. Vogna, R. Marotta, A. Napolitano, R. Andreozzi, M. d’Ischia, “Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone”. Wat. Res. Vol. 38, pp. 414-422, 2004.
 
[21]  C. Zwiener, F.H. Frimmel, “Oxidative treatment of pharmaceuticals in water”, Wat. Res. vol. 34, pp. 1881-1885, 2000.
 
[22]  K. Hikmat, H. Azis, H. Miessner, S. Müller, D. Kalass, D. Moeller, I. Khorshid, M.A.M. Rashid, “Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma”, Chem. Eng. J. pp. 1033-1041, 2016.
 
[23]  R.R. Giri, H. Ozaki, T. Ishida, R. Takanami, S. Taniguchi, “Synergy of ozonation and photocatalysis to mineralize low concentration 2,4-dichlorophenoxyacetic acid in aqueous solution”. Chemosphere, vol. 66, pp. 1610-1617, 2007.
 
[24]  N. Aristov, A. Habekost, „Heterogeneous dehalogenation of PCBs with iron/toluene or iron/quicklime”. Chemosphere, vol. 80, pp. 113-115, 2010.
 
[25]  A. Habekost, N. Aristov, „Heterogeneous reductive dehalogenation of PCB contaminated transformer oil and brominated diphenyl ethers with zero valent iron”, Chemosphere, vol. 88, pp. 1283-1287, 2012.