World Journal of Environmental Engineering
ISSN (Print): 2372-3076 ISSN (Online): 2372-3084 Website: https://www.sciepub.com/journal/wjee Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
World Journal of Environmental Engineering. 2015, 3(2), 58-66
DOI: 10.12691/wjee-3-2-5
Open AccessArticle

The Influence of Laser Biotechnology on Energetic Value and Chemical Parameters of Rose Multiflora Biomass and Role of Catalysts for bio-energy production from Biomass: Case Study in Krakow-Poland

Obid Tursunov1, , Jan Dobrowolski1, Kazimierz Klima2, Bogusława Kordon3, Janusz Ryczkowski4, Grzegorz Tylko5 and Grzegorz Czerski6

1Team of Environmental Engineering and Biotechnology, Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, Krakow, Poland

2The Faculty of Agriculture and Economics, University of Agriculture in Krakow, Poland

3The Faculty of Production and Power Engineering, University of Agriculture in Krakow, Poland

4Department of Chemical Technology, The Faculty of Chemistry, Maria Curie-Sklodowska University, Lublin, Poland

5Department of Biology and Cell Imaging, The Institute of Zoology, Jagiellonian University in Krakow, Poland

6Team of Fuel Technology, The Faculty of Energy and Fuels, AGH University of Science and Technology, Krakow, Poland

Pub. Date: July 09, 2015

Cite this paper:
Obid Tursunov, Jan Dobrowolski, Kazimierz Klima, Bogusława Kordon, Janusz Ryczkowski, Grzegorz Tylko and Grzegorz Czerski. The Influence of Laser Biotechnology on Energetic Value and Chemical Parameters of Rose Multiflora Biomass and Role of Catalysts for bio-energy production from Biomass: Case Study in Krakow-Poland. World Journal of Environmental Engineering. 2015; 3(2):58-66. doi: 10.12691/wjee-3-2-5

Abstract

A study of energy recovery from three groups (control, laser stimulated (3times/3sec) and laser stimulated 3times/9sec) of Rose multiflora biomass after 5 years field experiments was undertaken. The energy content of Rose multiflora biomass control group is 17.574 MJ/kg, laser stimulated (3times/3sec) group is 18.255 MJ/kg and laser stimulated (3times/9sec) group is 17.698 MJ/kg. The elemental composition of the samples was investigated using Eltra CHS 580 analyzer and it shows that the Rose multiflora biomass of control group contains 53.53% of carbon, 7.19% of hydrogen and 0.04% of sulfur; laser stimulated (3times/3sec) group of Rose multiflora biomass contains 53.11% of carbon, 7.22% of hydrogen and 0.04% of sulfur; and laser stimulated (3times/9sec) group of Rose multiflora biomass contains 53.16% of carbon, 7.37% of hydrogen and 0.03% of sulfur. The energy flow (exothermic and endothermic) and thermal degradation analysis were carried out using calorimeter (model: KL-12Mn) and European PN-EN and ASTM standards respectively. It has been observed that Rose multiflora biomass is more reactive to combustion as compared to municipal solid waste (MSW). Moreover, pyrolysis and gasification can be used to convert Rose multiflora biomass to liquid or gaseous fuel. This paper also presents analysis of chemical properties, surface area analysis and concentration of Ni/SiO2 and Ni/SiO2 with K2O as promoter for catalytic cracking of tar and enhancing bio-yield production from technologies such as pyrolysis and gasification of biomass.

Keywords:
laser biotechnology rose multiflora biomass catalyst pyrolysis gasification energy

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 8

References:

[1]  M. Junginger, E. de Visser, K. Hjort-Gregersen, J. Koornneef, R. Raven, A. Faaij. Technological learning in bioenergy systems. Energy Policy. 34 (18) (2006) 4024-4041.
 
[2]  E.D. Larson. A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Dev. 10(2) (2006) 109-126.
 
[3]  A. Bauen, G. Berndes, M. Junginger, M. Londo, F. Vuille, R. Ball. Bioenergy – a sustainable and reliable energy source: a review of status and prospects. IEA Bioenergy 2009. (IEA Bioenergy ExCo:2009:06).
 
[4]  E. Gnansounou, A. Dauriat, J. Villegas, L. Panichelli. Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour Technol. 100 (21) (2009) 4919-30.
 
[5]  M. Fischedick, R. Schaeffer, A. Adedoyin, M. Akai, T. Bruckner, L. Clarke. Mitigation potential and costs. In: O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, von C. Stechow, editors. IPCC special report on renewable energy sources and climate change mitigation. Cambridge, United Kingdom and New York, NY, USA: Cambridge University. (2011) 791-864.
 
[6]  H. Chum, A. Faaij, J. Moreira, G. Berndes, P. Dhamija, H. Dong. Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S.J. Gerssen-Gondelach et al. / Renewable and Sustainable Energy Reviews 40 (2014) 964-998.
 
[7]  T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow, editors. IPCC special report on renewable energy sources and climate change mitigation. Cambridge, United Kingdom and New York, NY, USA: Cambridge University. (2014) 209-332.
 
[8]  O. Tursunov, J. Dobrowolski, W. Nowak. Catalytic energy production from municipal solid waste biomass: Case study in Perlis, Malaysia. World Journal of Environmental Engineering. 3 (1) (2015) 7-14.
 
[9]  W. Majtkowski. Perennial grass species as energy crops in Poland. Proceedings of the international conference “Renewable energy sources on the verge of the XXI century”. Warsaw 10-11th December 2001.
 
[10]  A. Demirbas. Combustion characteristics of different biomass fuels. Prog Energy Combust Sci. 30 (2004) 219-230.
 
[11]  F.L.Chan, A. Tanksale. Review of recent developments in Ni-based catatlysts for biomass gasification. J. Renewable and Sustainable Energy Reviews. 38 (2014) 428-438.
 
[12]  O. Tursunov. A comparison of catalysts zeolite and calcined dolomite for gas production from pyrlolysis of municipal solid waste (MSW). Elsevier Applied Science. Science Direct. J. Ecological Engineering. 69 (2014) 237-243.
 
[13]  B. Dou, J. Gao, X. Sha, S.W. Baek. Catalytic cracking of tar component from high-temperature fuel gas. J. Applied Thermal Engineering. 23 (2003) 2229-2239.
 
[14]  Q.Z. Yu, C. Brage, T. Nordgreen, K. Sjöström. Effects of Chinese dolomites on tar cracking in gasification of birch. J. Fuel. 88 (2009) 1922-1926.
 
[15]  S.S. Tamhankar, K. Tsuchiya, J.B. Riggs. Catalytic cracking of benzene on iron oxide-silica: catalyst activity and reaction mechanism. J. Appl. Catal. 16 (1985) 103-121.
 
[16]  T. Suzuki, H. Ohme, Y. Watanabe. Alkali metal catalyzed carbon dioxide gasification of carbon. J. Energy Fuels. 6 (1992) 343-351.
 
[17]  M. He, B. Xiao, Z. Hu, S. Liu, X. Guo, S. Luo. Syngas production from catalytic gasification of waste polyethylene: Influence of temperature on gas yield and composition. Int. J. Hydrogen Energy. 34 (2009)1342-1348.
 
[18]  D. Li, Y. Nakagawa, K. Tomishige. Development of Ni-Based Catalysts for Steam Reforming of Tar Derived from Biomass Pyrolysis. Chinese J. Catal. 33 (2012) 583-594.
 
[19]  D.A. Constantinou, M.C. Álvarez-Galván, J.L.G. Fierro, A.M. Efstathiou. Low-temperature conversion of phenol into CO, CO2 and H2 by steam reforming over La-containing supported Rh catalysts. J. Appl.Catal. B: Environ. 117-118 (2012) 81-95.
 
[20]  S. Cheah, K.R. Gaston, Y.O. Parent, M.W. Jarvis, T.B. Vinzant, K.M. Smith, N.E.Thornburg, M.R. Nimlos, K.A. Magrini-Bair. Nickel cerium olivine catalyst for catalytic gasification of biomass. J. Appl. Catal. B: Environ. 134-135(2013) 34-45.
 
[21]  Y. Shen, P. Zhao, Q. Shao, D. Ma, F. Takahashi, K. Yoshikawa. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. J. Applied Catalysis B: Environmental. 152-153 (2014) 140-151.
 
[22]  I.G. Lee, S.K. Ihm. Catalytic Gasification of Glucose over Ni/Activated Charcoal in Supercritical Water. J. Ind. Eng. Chem. Res. 48 (2009) 1435-1442.
 
[23]  D.D. Le, X. Xiao, K. Morishita, T. Takarada. Biomass Gasification Using Nickel Loaded Brown Coal Char in Fluidized Bed Gasifier at Relatively Low Temperature. J. Chem. Eng. Jpn. 42 (2009) 51-57.
 
[24]  C.F. Wu, P.T. Williams, A Novel Nano-Ni/SiO(2) Catalyst for Hydrogen Production from Steam Reforming of Ethanol. J. Environmental Science & Technology. 44 (2010) 5993-5998.
 
[25]  S. Tomiyama, R. Takahashi, S. Sato, T. Sodesawa, S. Yoshida. Preparation of Ni/SiO2 catalyst with high thermal stability for CO2-reforming of CH4. J. Applied Catalysis A: General. 241 (2003) 349-361.
 
[26]  N.J. Tang, W. Zhong, W. Liu, H.Y. Jiang, X.L. Wu, Y.W. Du. Synthesis and complex permeability of Ni/SiO2 nanocomposite. J. Nanotechnology. 15 (2004) 1756-1758.
 
[27]  A.J. Akande, R.O. Idem, A.K. Dalai. Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production. J. Applied Catalysis A: General. 287 (2005) 159-175.
 
[28]  L.I. Darvell, K. Heiskanen, J.M. Jones, A.B. Ross, P. Simell, A. Williams. An investigation of alumina-supported catalysts for the selective catalytic oxidation of ammonia in biomass gasification. J. Catalysis Today. 81 (2003) 681-692.
 
[29]  G. Goncalves, Lenzi, M. K., Santos, O. A. A., Jorge, L. M. M.. Preparation and characterization of nickel based catalysts on silica, alumina and titania obtained by sol-gel method. Journal of NonCrystalline Solids. 352 (2006) 3697-3704.
 
[30]  J. Srinakruang, K. Sato, T. Vitidsant, K. Fujimoto. Highly efficient sulfur and coking resistance catalysts for tar gasification with steam. J. Fuel. 85 (2006) 2419-2426.
 
[31]  A. Gil, A. Díaz, L.M. Gandía, M. Montes, Influence of the preparation method and the nature of the support on the stability of nickel catalysts. J. Applied Catalysis A: General. 109 (1994) 167-179.
 
[32]  L.a. Garcia, R. French, S. Czernik, E. Chornet. Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition. J. Applied Catalysis A: General, 201 (2000) 225-239.
 
[33]  X. Cai, X. Dong, W. Lin. Effect of CeO2 on the catalytic performance of Ni/Al2O3 for autothermal reforming of methane. Journal of Natural Gas Chemistry. 17 (2008) 98-102.
 
[34]  Q. Miao, G. Xiong, S. Sheng, W. Cui, L. Xu, X. Guo. Partial oxidation of methane to syngas over nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide. J. Applied Catalysis A: General. 154 (1997) 17-27.
 
[35]  V.R. Choudhary, B.S. Uphade, A.S. Mamman. Oxidative Conversion of Methane to Syngas over Nickel Supported on Commercial Low Surface Area Porous Catalyst Carriers Precoated with Alkaline and Rare Earth Oxides. Journal of Catalysis. 172 (1997) 281-293.
 
[36]  J.W. Dobrowolski, A. Budak, D. Trojanowska, M. Rymarczyk, J. Macuda. Laser stimulation of Trichophyton mentagrophytes for the enhancement biodegradation of hydrocarbons. J. Environmental Engineering and Management. 11 (10) (2012b) 1783-1788.
 
[37]  J.W. Dobrowolski, M. Sliwka, R. Mazur. Laser biotechnology for more efficient bioremediation, protection of aquatic ecosystems and reclamation of contaminated areas. J. Chem Technol Biotechnol. 87 (2012a) 1354-1359.
 
[38]  J.W. Dobrowolski. Perspectives of application of laser biotechnology in management of the natural environment. Polish Journal of Environmental Studies. 10 (Sup. 1) (2000) 7-9.
 
[39]  J.W. Dobrowolski. Ecotoxicology, human ecology, laser biotechnology in primary prevention of environmental health hazard. J. Przeglad Lekarski. 58 (2001) 7.
 
[40]  Z. Horsek, J. Hrebicek. Biodegradable Waste Management in the Czech Republic. A proposal for Improvement. Pol.J.Environ. Stud. 23 (6) (2014) 2019-2025.
 
[41]  H. Maoyun, B. Xiao, L. Shiming, H. Zhiquan, G. Xianjun, L. Siyi, Y. Fan. Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. Journal of Analytical and Applied Pyrolysis. 87 (2010) 181-187.
 
[42]  K. Amin, G.S. Yang, Identification of the MSW Characteristics and Potential of Plastic Recovery at Bakri Landfill. Journal of Sustainable Development. 5 (2012) 11-17.
 
[43]  M.O. Edema, V. Sichamba, F.W. Ntengwe, (2012). Solid Waste Management-Case Study of Ndola, Zambia. International Journal of Plant, Animal and Environmental Sciences. 2 (2012) 248-255.
 
[44]  S. Liu, D. Chen, K. Zhang, J. Li, N. Zhao. Production of hydrogen production by ethanol steam reforming over catalysts from reverse microemulsion-derived nanocompounds. Int. J. Hydrogen Energy. 33 (2008) 3736-3747.
 
[45]  C. Wu, P. Williams. T. Investigation of coke formation on NiMg-Al catalyst for hydrogen production from the catalytic steam pyrolysis-gasification of polypropylene. Appl. Catal., B. 96 (2010) 198-207.
 
[46]  D.M. Walker, S.L. Pettit, J.T. Wolan, J.N. Kuhn. Synthesis gas production to desired hydrogen to carbon monoxide ratios by tri-reforming of methane using Ni–MgO–(Ce,Zr)O2 catalysts. J. Appl Catal A. 445-446 (2012) 61-68.