[1] | Flores-Mireles, A.L., Winans, S.C. and Holguin, G, “Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots,” Applied and Environmental Microbiology, 73. 7308-7321. November 2007. |
|
[2] | Holguin, G., Vazquez, P. and Bashan, Y, “The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview,” Biological Fertility of Soils, 33. 265-278. February 2001. |
|
[3] | Holguin, G., Zamorano, P.G., Bashan-De, L.E., Mendoza, R., Amador, E. and Bashan, Y, “Mangrove health in an arid environment encroached by urban development-a case study,” Science of the Total Environment, 363. 260-274. June 2006. |
|
[4] | Vazquez, P., Holguin, G., Puerte, M.E., Lopez-Cortes, A. and Bashan, Y, “Phosphate-solubilising microorganisms associated with the rhizosphere of mangroves in a semiarid Coastal lagoon,” Biological Fertility of Soils, 30. 460-468. April 2000. |
|
[5] | Subba Rao, N.S, Advances in agricultural microbiology. In: Subba Rao NS, editor. Studies in the Agricultura and Food Sciences, Butterworth Scientific, London, 1982, 295-303. |
|
[6] | Goldstein, A.H, “Recent progress in understanding the molecular genetics and biochemestry of calcium phosphate solubilization by gram negative bacteria,” Biological Agriculture and Horticulture, 12. 185-93. September 1995. |
|
[7] | Kpomblekou, K. and Tabatabai, M.A, “Effect of organic acids on release of phosphorus from phosphate rocks,” Soil Science, 158. 442-453. December 1994. |
|
[8] | Glick, B.R, “The enhancement of plant growth by free-living bacteria,” Canadian Journal of Microbiology, 41. 109-17. February 1995. |
|
[9] | Kathiresan, K. and Selvam, M.M, “Evaluation of beneficial bacteria from mangrove soil,” Botanica Marina, 49(1). 86-88. January 2006. |
|
[10] | Nautiyal, C.S, “An efficient microbiological growth medium for screening phosphate solubilizing microorganism,” FEMS Microbiology Letter, 170. 265-270. January 1999. |
|
[11] | Nguyen, C., W. Yan, F. Le Tacon, and Lapeyrie, F, “Genetic variability of phosphate solubilizing activity by monocaryotic and dicaryotic mycelia of the ectomycorrhizal fungus Laccaria bicolour (Maire) P.D. Orton,” Plant and Soil, 143. 193-199. February 1992. |
|
[12] | Katznelson, H., Peterson, E. and Rouatt, J.W, “Phosphate-dissolving microorganisms on seed and in the root zone of plants,” Canadian Journal of Botany, 40 (9). 1181-1186. September 1962. |
|
[13] | Mehta, S. and Nautiyal, C.S, “An efficient method for qualitative screening of phosphate solubilizing bacteria,” Current Microbiology, 43. 51-56. July 2001. |
|
[14] | Murphy, J. and Riely, J.P, “A modified single solution method for the determination of phosphate in natural waters,” Analytica chimica acta, 27. 31-36. January 1962. |
|
[15] | Buchanan, R.E. and Gibbons, N.E, Bergey’s manual of determinative bacteriology. (Eighth edition), The Williams and Wilkins Co., Baltimore, 1974, 747-842. |
|
[16] | Joseph, S. and Jisha, M.S, “Buffering reduces phosphate solubilizing ability of selected strains of bacteria,” World Journal of Agricultural Science, 5 (1). 135-137. January 2009. |
|
[17] | Louw, H.A. and Webley, D. M, “A study of soil bacteria dissolving certain mineral phosphate fertilizers and related compounds,” Journal of Applied Microbiology, 22. 227-33. August 1959. |
|
[18] | Johnston, H.W, “The solubilization of insoluble phosphate - A quantitative and comparative study of the action of selected aliphatic acids on TCP,” Journal of Science and Technology, 36. 49-65, January 1954. |
|
[19] | Promod, K.C. and Dhevendaran, K, “Studies on phosphobacteria in Cochin backwater,” Journal of Marine Biological Association of India, 29. 297-305. June 1987. |
|
[20] | Audipudi, A.V., Kumar, N.P. and Sudhir, A, “Phosphate solubilising mangrove associated with Chollangi mangrove soil in South east coast of India,” International Journal of Scientific and Engineering Research, 3(11). 1-9. November 2012. |
|
[21] | Perez, E., Sulbaran, M., Ball, M.M. and Yarzabal, L.A, “Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region,” Soil Biology and Biochemistry, 39. 2905-2914. November 2007. |
|
[22] | Parks, E.J., Olson, G.J., Brickman, F.E. and Baldi, F, “Characterization of high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron one by a fungus,” Journal of Industrial Microbiology, 5. 183-190. May 1990. |
|
[23] | Hoberg, E., Marschner, P. and Lieberei, R, “Organic acid exudation and pH changes by Gordonia sp. and Pseudomonas fluorescens grown with P adsorbed to goethite,” Microbiological Research, 160. 177-187. April 2005. |
|
[24] | Gerke, J, “Phosphate, aluminium and iron in the soil solution of three different soils in relation to varying concentrations of citric acid,” Journal of Plant Nutrition and Soil Science, 155. 339-343. January 1992. |
|
[25] | Illmer, P. and Schinner, F, “Solubilization of inorganic calcium phosphates-solubilization mechanisms,” Soil Biology and Biochemistry, 27, 257-263. March 1995. |
|
[26] | Ghosh, U., Subhasisni, P., Dilipan, E., Raja, S., Thangaradjou T. and Kanan, L, “Isolation and characterisation of phosphate solubilising bacteria from sea-grass rhizosphere soil,” Journal of Ocean University of China., 11(1). 86-92. October 2012. |
|