Sustainable Energy
ISSN (Print): 2372-2134 ISSN (Online): 2372-2142 Website: https://www.sciepub.com/journal/rse Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Sustainable Energy. 2016, 4(1), 17-27
DOI: 10.12691/rse-4-1-3
Open AccessArticle

Experimental Development of Solar Collector of Unconventional Air

J. O. Almirón1 and M. A. Lara1,

1Alternative Energy Laboratory (FCEIA-IFIR-UNR-CONICET), Av. Pellegrini 250 - CP 2000 – Rosario, Argentina

Pub. Date: June 22, 2016

Cite this paper:
J. O. Almirón and M. A. Lara. Experimental Development of Solar Collector of Unconventional Air. Sustainable Energy. 2016; 4(1):17-27. doi: 10.12691/rse-4-1-3

Abstract

Is designed and built a solar air collector, corresponding to an elliptical collector format, in order to analyze their energy performance in terms of thermal efficiency and feasibility, to be used in agro-industrial processes and environments conditioning habitat. Experimental data were surveyed to quantify and substantiate efficiency of the device as a heat exchanger. These results were favorable than expected before construction. Average values less than 25% efficiency were expected, and average values of 28.7% were obtained. The velocity values of internal air tested were between 1.1 and 1.83 m/seg., and angles experienced were 44 ° and 40° to the horizontal plane. The final conclusión allows us to demonstrate that the unconventional system can obtain the same results as conventional air collectors in terms of operability and heat exchange.

Keywords:
solar energy collector heat transfer efficiency

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 30

References:

[1]  Meinel A. B., Meinel M. P. (1982): Aplicaciones de la Energía Solar Térmica, Reverté, España, pp: 464-465.
 
[2]  Espinoza R. et al., 2010. Secado Solar de Productos Agroalimentarios en Iberoamérica, Espinosa, Saravia. 1° ed. Salta, pp: 122-131.
 
[3]  Duffie J., Beckman W., 1980. Solar Engineering of Thermal Processes, John Wiley & Sons, E.E.U.U., pp: 257, 267, 297-299, 689, 698-702.
 
[4]  Ibáñez Plana M., Rosell Polo J., Rosell Urrutia J., 2005. Tecnología Solar, Mundi-Prensa, España, pp: 233-24.
 
[5]  Perelló Daniel A., 2008. Policarbonato versus vidrios en Colectores Solares, Universidad Nacional de Salta, Salta, pp: 2-6, 9-11, 27-31.
 
[6]  Incropera F., DeWitt D., 1999. Fundamentos de Transferencia de Calor, 4 ° ed, Prentice Hall, México, pp: 420-421, 425-426, 482, 487, 490-491, 506, 509, 515, 289-290.
 
[7]  American Society of Heating Refrigerating and Air-Conditioning Engineers Inc. (1977). Ashrae Handbook & Product Directory. New York: Author.
 
[8]  Felipe Blanch J. J., López Martínez J. A., 1999. Sistemas Solares Térmicos de Baja Temperatura, Universidad Politécnica de Cataluña, Barcelona, pp: 20.
 
[9]  Bistoni, S. et al., 2003. Análisis Teórico de un Colector Solar de Aire, ASADES, Vol. 7, Argentina.
 
[10]  Apurba L., 2010. Optimal thermo-hydraulic performance of solar air heater having chamfered rib-groove roughness on absorber plate. International Journal of Energy and Environment, 1, 687-688.
 
[11]  Hernández A. et al. (2007). Diseño, Construcción y Primeros Ensayos de un Colector Solar Calentador de Aire de tipo Loop Convectivo para Calentamiento de Edificios, ASADES, Volumen 11, Argentina.