Sustainable Energy
ISSN (Print): 2372-2134 ISSN (Online): 2372-2142 Website: https://www.sciepub.com/journal/rse Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Sustainable Energy. 2023, 11(1), 21-30
DOI: 10.12691/rse-11-1-3
Open AccessArticle

Pre-Feasibility Study for the Construction of a Photovoltaic Solar Power Plant with Energy Storage System Based on Lithium-Ion Batteries in Sub-Saharan Africa: Case of a 30 MWp Power Plant in Dapaong in Northern Togo

Kokou Prosper Semekonawo1, , Bouwèreou Bignan-Kagomna1, Oumarou Savadogo2, Dramane Santara1, Florent Xavier Nignan1, Sié Kam1 and Joseph Dieudonné Bathiebo1

1Laboratoire d’Energies Thermiques Renouvelables, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso

2Laboratory of New Materials for Energy and Electrochemistry, Polytechnique Montréal, Quebec - Canada

Pub. Date: October 17, 2023

Cite this paper:
Kokou Prosper Semekonawo, Bouwèreou Bignan-Kagomna, Oumarou Savadogo, Dramane Santara, Florent Xavier Nignan, Sié Kam and Joseph Dieudonné Bathiebo. Pre-Feasibility Study for the Construction of a Photovoltaic Solar Power Plant with Energy Storage System Based on Lithium-Ion Batteries in Sub-Saharan Africa: Case of a 30 MWp Power Plant in Dapaong in Northern Togo. Sustainable Energy. 2023; 11(1):21-30. doi: 10.12691/rse-11-1-3

Abstract

The rate of access to electricity in Togo is estimated at 45% in 2018 despite the enormous solar potential with approximately 3203.1 hours that the country has. In order to remedy such a situation, the country plans, as part of its energy policy, to build a 30 MWp solar power plant with energy storage in Dapaong in northern Togo. In this article we propose a pre-feasibility study for the construction of the plant by addressing the technical, financial, environmental and social aspects. The construction of such a plant would require the installation of 112,320 solar panels of 275 Wp over an area of approximately 80 Hectares. We consider within the framework of this study, an energy storage duration of 2 h or 68 MWh thanks to the use of Lithium-ion batteries. The installation of this plant should require, according to our study, an investment of 82.4 million USD (50 billion XOF) with a cost of electricity produced by the plant of 0.16 USD/kWh (98.37 XOF/ kWh). This plant should make it possible to avoid an emission of around 30,749.76 tons of CO2 equivalent per year by producing clean electricity of around 42.7 GWh per year.

Keywords:
photovoltaic solar power plant energy storage lithium-ion battery dapaong togo

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  GIZ, Approvisionnement en énergie décentralisée au Togo (ProENERGIE), 2019.
 
[2]  Kokou Prosper Semekonawo, Modèles de réseaux de neurones artificiels LSTM, ARIMA et de régression multivariable pour une analyse prévisionnelle de la demande d’énergie électrique en Afrique de l’Ouest, Université Joseph KI-ZERBO, PhD Thesis, 2023.
 
[3]  Pierre OZER, Yvon-Carmen HOUNTONDJI, Florence DE LONGUEVILLE, Recent evolution of the coastline in the Bight of Benin. Example of Togo and Benin, 2017.
 
[4]  Amega Kokou, Yendoubé Laré, Ramchandra Bhandari, Yacouba Moumouni, Aklesso Y. G. Egbendewe, Windmanagda Sawadogo, and Saidou Madougou, Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo" Energies 15, no. 24: 9532, 2022.
 
[5]  Todine Salifou, Amy Nabiliou, Mataani F. Alloula, Juzer Vasi, Philippe Malbranche, Heinz Ossenbrink, Pierre Verlinden, Stefan Nowak, Sarah Kurtz, Lawrence L. Kazmerski, Creating a solar roadmap for the Republic of Togo, Solar Compass, Volume 6, 2023.
 
[6]  chilabalo E. Patchali, Olusegun O. Ajide, Olaniran J. Matthew, T.A.O. Salau, Olanrewaju M. Oyewola, Generation of meteorological year for the assessment of photovoltaic systems performance in Togo, West Africa, Scientific African, Volume 16, 2022.
 
[7]  AT2ER, Stratégie d’électrification du Togo, 2018.
 
[8]  World Bank, World Bank Approves $311 Million to Increase Grid-Connected Renewable Energy Capacity in West Africa, , December 2022.
 
[9]  World Bank, Procurement details, , 2022.
 
[10]  Yuan-Kang Wu, Jhih-Hao Lin, Huei-Jeng Lin, Standards and Guidelines for Grid-Connected Photovoltaic Generation Systems: A Review and Comparison, IEEE Transactions on Industry Applications, 53(4), 3205–3216, 2017.
 
[11]  ARSE, «Rapport d’activité 2017», 2018.
 
[12]  PVGIS, Photovoltaic geographical information system , 2023.
 
[13]  Mesude Bayrakci, Yosoon Choi, Jeffrey R. S. Brownson, Temperature Dependent Power Modeling of Photovoltaics, Energy Procedia, 57 (2014) 745-754, 2013.
 
[14]  I. Mustapha, B. U. Musa, M. K. Dikwa, M. Abbagana, Electrical parameters estimation of solar photovoltaic module, Journal of Engineering and Applied Science, 2022.
 
[15]  Dubey B., Tiwari D., Kumar R., Effect of temperature variations over Photovoltaic modules efficiency of different technologies at NOCT, IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 2016.
 
[16]  E. A. Setiawan, A. Setiawan, D. Siregar, Analysis on solar panel performance and pv-inverter Configuration for tropical region, Journal of Thermal Engineering, Vol. 3, No. 3, pp. 1259-1270, 2017.
 
[17]  Rupendra Kumar Pachauri, Om Prakash Mahela, Abhishek Sharma, Jianbo Bai, Yogesh K. Chauhan, Baseem Khan, Hassan Haes Alhelou, Impact of Partial Shading on Various PV Array Configurations and Different Modeling Approaches: A Comprehensive Review, IEEE Power & Energy Society Section, 2020.
 
[18]  Rehman S., Ahmed M. A., Mohamed M. H., Al-Sulaiman F. A, Feasibility study of the grid connected 10 MW installed capacity PV power plants in Saudi Arabia, Renewable and Sustainable Energy Reviews, 80, 319–329, 2017.
 
[19]  Hussein A. Kazema, M.H. Albadib, Ali H.A. Al-Waelic, Ahmed H. Al-Busaidid, Miqdam T. Chaichane, Techno-economic feasibility analysis of 1 MW photovoltaic grid connected system in Oman, Case Studies in Thermal Engineering, 2017.
 
[20]  Al-Sabounchi A. M., Yalyali S. A., Al-Thani H. A., Design and performance evaluation of a photovoltaic grid-connected system in hot weather conditions, Renewable Energy, 53, 71–78, 2013.
 
[21]  Rallabandi V., Akeyo O. M., Jewell N., Ionel D. M, Incorporating Battery Energy Storage Systems into Multi-MW Grid Connected PV Systems, IEEE Transactions on Industry Applications, 1–1, 2018.
 
[22]  Jianlin Li, Yushi Xue, Liting Tian, Xiaodong Yuan, Research on optimal Configuration strategy of energy storage capacity in gridconnected microgrid, Protection and Control of Modern Power Systems, 2017.
 
[23]  Gaztanaga H., Landaluze J., Etxeberria-Otadui I., Padros A., Berazaluce I., Cuesta D., Enhanced experimental PV plant grid-integration with a MW Lithium-Ion energy storage system, IEEE Energy Conversion Congress and Exposition, 2013.
 
[24]  Koami S. Hayibo, Joshua M. Pearce, Optimal inverter and wire selection for solar photovoltaic fencing applications, Renewable Energy Focus, 42, Pages 115-128, 2022.
 
[25]  Chun Sing Lai, M.D. McCulloch, Levelized Cost of Energy for PV and Grid Scale Energy Storage Systems, Energy and Power Group, Department of Engineering Science, University of Oxford, UK, 2016.
 
[26]  Kokou Sabi, Akpe Agbossou, Abiziou Tchinguilou, Zikpo Fo-Me, Ayassou Koffi, Carbon intensity of the energy sector for togo in 2012, Global Journal of Pure and Applied Sciences Vol. 23, 2017: 367-375, 2017.
 
[27]  Pinto M. A., Frate C. A., Rodrigues T. O., Caldeira-Pires A., Sensitivity analysis of the carbon payback time for a Brazilian photovoltaic power plant, Utilities Policy, 63, 101014, 2020.