Physics and Materials Chemistry
ISSN (Print): 2372-7098 ISSN (Online): 2372-7101 Website: https://www.sciepub.com/journal/pmc Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Physics and Materials Chemistry. 2015, 3(2), 18-24
DOI: 10.12691/pmc-3-2-1
Open AccessArticle

In-situ Synthesis of PVA/HgS Nanocomposite Films and Tuning Optical Properties

Omed Gh. Abdullah1, , Yahya A.K. Salman2 and Salwan A. Saleem2

1Department of Physics, Faculty of Science and Science Education, School of Science, University of Sulaimani, Kurdistan Region, Iraq

2Department of Physics, College of Science, University of Mosul, Iraq

Pub. Date: November 13, 2015

Cite this paper:
Omed Gh. Abdullah, Yahya A.K. Salman and Salwan A. Saleem. In-situ Synthesis of PVA/HgS Nanocomposite Films and Tuning Optical Properties. Physics and Materials Chemistry. 2015; 3(2):18-24. doi: 10.12691/pmc-3-2-1

Abstract

Polymer based nanocomposite films of polyvinyl alcohol (PVA) doped with mercury sulfide (HgS) were prepared via in-situ chemical reduction and the solution cast methods, with different HgS concentrations, in order to study the effect of HgS content on optical properties of PVA. The nanocomposites films were characterized using FTIR, XRD, and SEM. The UV-Visible absorption spectra in the wavelength range (190–1100) nm were analyzed in terms of absorption formula for non-crystalline materials. The band gap and the fundamental optical constants of the prepared samples have been investigated and showed a clear dependence on the HgS concentration. The observed value of band gap for pure polyvinyl alcohol is about 6.27 eV and decreases to a value 4.88 eV for the film of 0.04M HgS content. The refractive index and consequently the related dispersion parameters of PVA and PVA/HgS nanocomposite versus HgS content have been determined and explained using Wemple-DiDomenico single oscillator model.

Keywords:
polymer nanocomposite mercury sulfide optical band gap complex dielectric constant

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  D.R. Paula, L.M. Robeson, “Polymer nanotechnology: Nanocomposites”, Polymer, 49 (2008) 3187-3204.
 
[2]  H.N. Chandrakala, B. Ramaraj, Shivakumaraiah, Siddara-maiah, “Optical properties and structural characteristics of zinc oxide cerium oxide doped polyvinyl alcohol films”, Journal of Alloys and Compounds, 586 (2014) 333-342.
 
[3]  S. Mahendia, A.K. Tomar, S. Kumar, “Nano-Ag doping induced changes in optical and electrical behaviour of PVA films”, Mater. Sci. Eng., B 176 (2011) 530-534.
 
[4]  P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles”, Langmuir 12 (1996) 788-800.
 
[5]  S. Berciaud, L. Cognet, P. Tamarat, B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles”, Nano Lett. 5 (2005) 515-518.
 
[6]  K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, “The optical properties of metal nanoparticles:  the influence of size, shape, and dielectric environment”, J. Phys. Chem. B 107 (2003) 668-677.
 
[7]  O.Gh. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite”, J. Mater. Sci. Mater. Electron. 26 (2015) 5303-5309.
 
[8]  O.Gh. Abdullah, D.A. Tahir, K. Kadir, “Optical and structural investigation of synthesized PVA/PbS nanocomposites”, J. Mater. Sci. Mater. Electron. 26 (2015) 6939-6944.
 
[9]  P. Chandra Sekhar, P. Naveen Kumar, U. Sasikala, V.V.R.N. Rao, A.K. Sharma, “Investigations on lithium ion complexed polyvinyl alcohol (PVA) solid polymer electrolyte films”, IRACST-Engineering Science and Technology: An International Journal (ESTIJ), 2 (2012) 908-912.
 
[10]  R.S. Al-Faleh, A.M. Zihlif, “A study on optical absorption and constants of doped poly(ethylene oxide)”, Physica B: Condensed Matter 406 (2011) 1919-1925.
 
[11]  D.Z. Qin, X.M. Ma, L. Yang, L. Zhang, Z.J. Ma, J.J. Zhang, “Biomimetic synthesis of HgS nanoparticles in the bovine serum albumin solution”, J. Nanopart. Res. 10 (2008) 559-566.
 
[12]  L. Zhang, G. Yang, G. He, L. Wang, Q. Liu, Q. Zhang, D. Qin, “Synthesis of HgS nanocrystals in the Lysozyme aqueous solution through biomimetic method”, Applied Surface Science 258 (2012) 8185-8191.
 
[13]  W. Wichiansee, M.N. Nordin, M. Green, R.J. Curry, “Synthesis and optical characterization of infra-red emitting mercury sulfide (HgS) quantum dots”, J. Mater. Chem. 21 (2011) 7331-7336.
 
[14]  T. Ren, S. Xu, W. Zhao, J. Zhu, “A surfactant-assisted photochemical route to single crystalline HgS nanotubes”, J. Photochem. Photobio. A: Chem. 173 (2005) 93-98.
 
[15]  P.S. Nair, T. Radhakrishnan, N. Revaprasadu, C.G.C.E. van Sittert, V. Djokovic, A.S. Luyt, “Characterization of polystyrene filled with HgS nanoparticles”, Materials Letters 58 (2004) 361-364.
 
[16]  P.S. Nair, T. Radhakrishnan, N. Revaprasadu, G.A. Kolawole, P. O'Brien, “The synthesis of HgS nanoparticles in polystyrene matrix”, J. Mater. Chem. 14 (2004) 581-584.
 
[17]  D. Qin, G. Yang, L. Zhang, X. Du, Y. Wang, “Synthesis and optical characteristics of PAM/HgS nanocomposites”, Bull. Korean Chem. Soc. 35 (2014) 1077-1081.
 
[18]  J.F. Zhu, Y.J. Zhu, M.G. Ma, L.X. Yang, L. Gao, “Simultaneous and rapid microwave synthesis of polyacrylamide-metal sulfide (Ag2S, Cu2S, HgS) nanocomposites”, J. Phys. Chem. C, 111 (2007) 3920-3926.
 
[19]  S. Wang, M. Zheng, “An easy approach to fabricating HgS/chitosan nanocomposite films and their ability to sense triethylamine”, J. Polym. Eng. 34 (2014) 339-344.
 
[20]  J.Z. Mbese, P.A. Ajibade, “Preparation and characterization of ZnS, CdS and HgS/Poly(methyl methacrylate) nanocomposites polymers, 6 (2014) 2332-2344.
 
[21]  K.S. Hemalatha, K. Rukmani, N. Suriyamurthy, B.M. Nagabhushana, “Synthesis, characterization and optical properties of hybrid PVA-ZnO nanocomposite: A composition dependent study”, Materials Research Bulletin 51 (2014) 438-446.
 
[22]  J. Xu, X. Cui, J. Zhang, H. Liang, H. Wang, J. Li, “Preparation of CuS nanoparticles embedded in poly(vinyl alcohol) nanofibre via electrospinning”, Bull. Mater. Sci. 31 (2008) 189-192.
 
[23]  X. Yuan, “Enhanced interfacial interaction for effective reinforcement of poly(vinyl alcohol) nanocomposites at low loading of graphene”, Polym. Bull. 67 (2011) 1785-1797.
 
[24]  R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, “γ-Irradiated PVA/Ag nanocomposite films: Materials for optical applications”, Journal of Alloys and Compounds 538 (2012) 212-219.
 
[25]  S. Sarma, P. Datta, “Characteristics of poly(vinyl alcohol)/lead sulphide quantum dot device”, Nanoscience and Nanotechnology Letters 2 (2010) 261-265.
 
[26]  S. Wu, C. Chen, X. Shen, G. Li, L. Gao, A. Chen, J. Hou, X. Liang, “One-pot synthesis, formation mechanism and near-infrared fluorescent properties of hollow and porous α-mercury sulfide”, Cryst. Eng. Comm. 15 (2013) 4162-4166.
 
[27]  R. Selvaraj, K. Qi, S.M.Z. Al-Kindy, M. Sillanpaa, Y. Kim, C.W. Tai, “A simple hydrothermal route for the preparation of HgS nanoparticles and their photocatalytic activities”, RSC Adv. 4 (2014) 15371-15376.
 
[28]  M. Sharma, S.K. Tripathi, “Photoluminescence study of CdSe nanorods embedded in a PVA matrix”, Journal of Luminescence 135 (2013) 327-334.
 
[29]  F.F. Muhammad, S.B. Aziz, S.A. Hussein, “Effect of the dopant salt on the optical parameters of PVA:NaNO3 solid polymer electrolyte”, J. Mater. Sci. Mater. Electron. 26 (2015) 521-529.
 
[30]  S. Elliot, The Physics and Chemistry of Solids, John Wiley & Sons, New York, (1998).
 
[31]  E.A. Davis, N.F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors”, Philos. Mag. 22 (1970) 903-922.
 
[32]  O.Gh. Abdullah, D.R. Saber, L.O. Hamasalih, “Complexion formation in PVA/PEO/CuCl2 solid polymer electrolyte”, Universal Journal of Materials Science, 3 (2015) 1-5.
 
[33]  A.A. Jamous, A.M. Zihlif, “Study of the electrical conduction in poly(ethylene oxide) doped with iodine”, Physica B: Condensed Matter 405 (2010) 2762-2767.
 
[34]  F. Yakuphanoglu, H. Erten, “Refractive index dispersion and analysis of the optical constants of an ionomer thin film”, Optica Applicata 35 (2005) 969-976.
 
[35]  A.N. Alias, Z.M. Zabidi, A.M.M. Ali, M.K. Harun, M.Z.A. Yahya, “Optical characterization and properties of polymeric materials for optoelectronic and photonic applications”, International Journal of Applied Science and Technology, 3 (2013) 11-38.
 
[36]  Z.M. Elimat, A.M. Zihlif, G. Ragosta, “Optical characterization of poly (ethylene oxide)/alumina composites”, Physica B: Physics of Condensed Matter 405 (2010) 3756-3760.
 
[37]  M.P. Moret, M.A.C. Devillers, K. Worhoff, P.K. Larsen, “Optical properties of PbTiO3, PbZrxTi1-xO3, and PbZrO3 films deposited by metalorganic chemical vapor on SrTiO3”, Journal of Applied Physics 92 (2002) 468-474.
 
[38]  S.H. Wemple, M. DiDomenico, “Behavior of the electronic dielectric constant in covalent and ionic materials”, Phys. Rev. B3 (1971) 1338-1351.
 
[39]  I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, “Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles”, Materials Chemistry and Physics 139 (2013) 802-810.
 
[40]  A. Benchaabane, Z.B. Hamed, F. Kouki, M.A. Sanhoury, K. Zellama, A. Zeinert, H. Bouchriha, “Performances of effective medium model in interpreting optical properties of polyvinylcarbazole:ZnSe nanocomposites”, Journal of Applied Physics 115 (2014) 134313.
 
[41]  S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, “Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites”, J. Mater. Sci. Mater. Electron. 26 (2015) 8022-8028.
 
[42]  S. Sugumaran, C.S. Bellan, “Transparent nano composite PVA–TiO2 and PMMA–TiO2 thin films: Optical and dielectric properties”, Optik 125 (2014) 5128-5133.
 
[43]  C. Kanimozhi, P. Balraju, G.D. Sharma, S. Patil, “Synthesis of diketopyrrolopyrrole containing copolymers: A study of their optical and photovoltaic properties”, J. Phys. Chem. B 114 (2010) 3095-3103.
 
[44]  F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids”, Phys. Rev. 92 (1953) 1324.
 
[45]  S.A. Sbeih, A.M. Zihlif, “Optical and electrical properties of kaolinite/ polystyrene composite”, J. Phys. D: Applied Physics 24 (2009) 145405.