[1] | H. W. Baac, “High-Amplitude Photoacoustic Ultrasound Transmitters using Nanostructured-Composite Films,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), Vancouver, 2016, p. SeTu1E.1. |
|
[2] | K. S. Giesfeldt, R. M. Connatser, M. A. De Jesús, N. V. Lavrik, P. Dutta, and M. J. Sepaniak, “Studies of the Optical Properties of Metal-Pliable Polymer Composite Materials,” Applied Spectroscopy 57, 1346-1352 (2003). |
|
[3] | D. Hay, P. Bagge, I. Khaw, L. Sun, O. Wood, Y. Chen, et al., “Ni-TaN Nanocomposite Absorber For Next-Generation Extreme Ultraviolet Lithography,” in Frontiers in Optics 2016, Rochester, New York, 2016, p. FTu1F.2. |
|
[4] | G. Jia, Y. Zhang, and P. Wang, “Nano-photo-thermal energy drive MoS2/ZnO nanoheterojunctions growing,” Optical Materials Express 6, 876-883 (2016). |
|
[5] | W. Ma, z. liu, Y. Sun, and J. Yuan, “Efficient Hybrid Solar Cells Based on Conjugated Polymer: PbSxSe1-x Nanocrystal Composites---Benefiting from Vertical Phase Segregation,” in International Photonics and Optoelectronics Meetings (POEM), Wuhan, 2013, p. ASu2A.3. |
|
[6] | H.-C. Mai and T.-E. Hsieh, “Nano-Composite Recording Layers Applied to Write-Once High-Density Optical Data Storage,” in Optical Data Storage, Portland, Oregon, 2007, p. MD9. |
|
[7] | J. H. Park, E.-S. Lee, J. Y. Lee, E. S. Lee, T. G. Lee, S.-H. Kim, et al., “Multimodal Nonlinear Optical Microscopy for Simultaneous 3-D Label-Free and Immunofluorescence Imaging of Biological Samples,” Journal of the Optical Society of Korea 18, 551-557 (2014). |
|
[8] | C.-C. Tu, L. Tang, J. Huang, A. Voutsas, and L. Y. Lin, “Solution-processed photodetectors from colloidal silicon nano/micro particle composite,” Optics Express 18, 21622-21627 (2010). |
|
[9] | M. Wan, Z. Liu, S. Li, B. Yang, W. Zhang, X. Qin, et al., “Silver Nanoaggregates on Chitosan Functionalized Graphene Oxide for High-Performance Surface-Enhanced Raman Scattering,” Applied Spectroscopy 67, 761-766 (2013). |
|
[10] | F. Song, X. Shen, M. Liu, and J. Xiang, “Preparation and magnetic properties of SrFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposite ferrite microfibers via sol-gel process,” Materials Chemistry and Physics 126, 791-796 (2011). |
|
[11] | M. Blaszkiewicz, D. S. McLachlan, and R. E. Newnham, “The volume fraction and temperature dependence of the resistivity in carbon black and graphite polymer composites: An effective media—percolation approach,” Polymer Engineering & Science 32, 421-425 (1992). |
|
[12] | A. E. Ferreira, M. L. Cerrada, E. Pérez, V. Lorenzo, H. Cramail, J. P. Lourenço, et al., “UHMWPE/SBA-15 nanocomposites synthesized by in situ polymerization,” Microporous and Mesoporous Materials 232, 13-25 (2016). |
|
[13] | M. S. Mehmood, T. Yasin, M. S. Jahan, B. M. Walters, M. Ahmad, and M. Ikram, “EPR Study of γ-Irradiated UHMWPE Doped with Vitamin E: Assessment of Thermal Effects on the Organic Radicals During Vitamin E Diffusion,” Applied Magnetic Resonance 44, 531-542 (2013). |
|
[14] | B. Ghafoor, M. S. Mehmood, U. Shahid, M. A. Baluch, and T. Yasin, “Influence of γ-ray modified MWCNTs on the structural and thermal properties of high-density polyethylene,” Radiation Physics and Chemistry 125, 145-150 (2016). |
|
[15] | M. Shafiee and A. Ramazani S.A, “Preparation and Characterization of UHMWPE/Graphene Nanocomposites Using Bi-Supported Ziegler-Natta Polymerization,” International Journal of Polymeric Materials and Polymeric Biomaterials 63, 815-819 (2014). |
|
[16] | P.-G. Ren, Y.-Y. Di, Q. Zhang, L. Li, H. Pang, and Z.-M. Li, “Composites of Ultrahigh-Molecular-Weight Polyethylene with Graphene Sheets and/or MWCNTs with Segregated Network Structure: Preparation and Properties,” Macromolecular Materials and Engineering 297, 437-443 (2012). |
|
[17] | S. S. Khasraghi and M. Rezaei, “Preparation and characterization of UHMWPE/HDPE/MWCNT melt-blended nanocomposites,” Journal of Thermoplastic Composite Materials 28, 305-326 (2015). |
|
[18] | M. Hashim, Alimuddin, S. Kumar, S. E. Shirsath, E. M. Mohammed, H. Chung, et al., “Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite,” Physica B: Condensed Matter 407, 4097-4103 (2012). |
|
[19] | S. E. Shirsath, R. H. Kadam, S. M. Patange, M. L. Mane, A. Ghasemi, and A. Morisako, “Enhanced magnetic properties of Dy3+ substituted Ni-Cu-Zn ferrite nanoparticles,” Applied Physics Letters 100, 042407 (2012). |
|
[20] | K. Raj, B. Moskowitz, and R. Casciari, “Advances in ferrofluid technology,” Journal of Magnetism and Magnetic Materials 149, 174-180 (1995). |
|
[21] | R. H. Kodama, C. L. Seaman, A. E. Berkowitz, and M. B. Maple, “Low-temperature magnetic relaxation of organic coated NiFe2O4 particles,” Journal of Applied Physics 75, 5639-5641 (1994). |
|
[22] | M. Khairy and M. E. Gouda, “Electrical and optical properties of nickel ferrite/polyaniline nanocomposite,” Journal of Advanced Research 6, 555-562 (2015). |
|
[23] | M. S. Mehmood, J. M. Shah, S. R. Mishra, and B. M. Walters, “The effect of high dose on residual radicals in open air irradiated α-T UHMWPE resin powder,” Radiation Physics and Chemistry 84, 100-104 (2013). |
|
[24] | S. Raghuvanshi, B. Ahmad, A. Srivastava, J. Krishna, and M. Wahab, “Effect of gamma irradiation on the optical properties of UHMWPE (Ultra-high-molecular-weight-polyethylene) polymer,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 271, 44-47 (2012). |
|
[25] | A. Abdul-Kader, “Photoluminescence and optical properties of He ion bombarded ultra-high molecular weight polyethylene,” Applied Surface Science 255, 5016-5020 (2009). |
|
[26] | M. Ahmad, S. Ali, M. S. Mehmood, H. Ali, A. Khurshid, S. Firdous, et al., “Ex Vivo Assessment of Carbon Tetrachloride (CCl4)-Induced Chronic Injury Using Polarized Light Spectroscopy,” Applied Spectroscopy 67, 1382-1389 (2013). |
|
[27] | V. Kawade, G. Bichile, and K. Jadhav, “X-ray and infrared studies of chromium substituted magnesium ferrite,” Materials Letters 42, 33-37 (2000). |
|
[28] | R. Waldron, “Infrared spectra of ferrites,” Physical Review 99, 1727 (1955). |
|
[29] | L. Costa, I. Carpentieri, and P. Bracco, “Post electron-beam irradiation oxidation of orthopaedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized with vitamin E,” Polymer Degradation and Stability 94, 1542-1547 (2009). |
|
[30] | V. Sankaranarayanan and C. Sreekumar, “Precursor synthesis and microwave processing of nickel ferrite nanoparticles,” Current Applied Physics 3, 205-208 (2003). |
|
[31] | E. S. Urkac, A. Oztarhan, F. Tihminlioglu, N. Kaya, D. Ila, C. Muntele, et al., “Thermal characterization of Ag and Ag+ N ion implanted ultra-high molecular weight polyethylene (UHMWPE),” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 261, 699-703 (2007). |
|
[32] | A. Raghavender, N. Biliškov, and Ž. Skoko, “XRD and IR analysis of nanocrystalline Ni-Zn ferrite synthesized by the sol-gel method,” Materials letters 65, 677-680 (2011). |
|
[33] | L. Costa and P. Bracco, “Mechanisms of crosslinking, oxidative degradation and stabilization of UHMWPE,” UHMWPE Biomaterials Handbook, 309 (2009). |
|
[34] | M. Martínez-Morlanes, F. Medel, M. Mariscal, and J. Puértolas, “On the assessment of oxidative stability of post-irradiation stabilized highly crosslinked UHMWPEs by thermogravimetry,” Polymer Testing 29, 425-432 (2010). |
|
[35] | M. S. Mehmood, B. M. Walters, T. Yasin, M. Ahmad, M. S. Jahan, S. R. Mishra, et al., “Correlation of residual radical’s with three phase morphology of UHMWPE: Analysis for the dependence on heat involved during vitamin E diffusion,” European Polymer Journal 53, 13-21 (2014). |
|
[36] | A. Manikandan, J. Judith Vijaya, M. Sundararajan, C. Meganathan, L. J. Kennedy, and M. Bououdina, “Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method,” Superlattices and Microstructures 64, 118-131 (2013). |
|