Research in Plant Sciences
ISSN (Print): 2333-8512 ISSN (Online): 2333-8539 Website: Editor-in-chief: Fathy El-Fiky
Open Access
Journal Browser
Research in Plant Sciences. 2019, 7(1), 1-10
DOI: 10.12691/plant-7-1-1
Open AccessArticle

Social Network Analysis as a Tool for the Study of Ecological Succession Route in Reclaimed Landfills

E.M. Papatheodorou1, 2, , G. Hatzoudis1, P. Kapagianni1, I. Tsiripidis3 and G.P. Stamou2

1Department of Ecology, School of Biology, Aristotle University, 54124 Thessaloniki, Greece

2International Hellenic University, Thermi 57001, Thessaloniki, Greece

3Department of Botany, School of Biology, Aristotle University, 54124 Thessaloniki, Greece

Pub. Date: November 10, 2019

Cite this paper:
E.M. Papatheodorou, G. Hatzoudis, P. Kapagianni, I. Tsiripidis and G.P. Stamou. Social Network Analysis as a Tool for the Study of Ecological Succession Route in Reclaimed Landfills. Research in Plant Sciences. 2019; 7(1):1-10. doi: 10.12691/plant-7-1-1


Our aim was to assess step by step the evolution of the herbaceous plant community in reclaimed landfill areas by network analysis techniques. We examined the network of interactions among the members of the plant community at two levels; global and local. The experiment was conducted at one landfill that contained three reclaimed sites of different ages after closure (2 years [R2], 9 years [R9] and 13 years [R13]), plus a neighbor seminatural grazed grassland (SM-NAT). In R2 and R9 sites, the plant community consisted of almost 20 species; among them legumes like Melitotus albus and strong competitors like the exotic Solanum elaeagnifolium. The high heterogeneity of the interspecific relationships, the limited number of influential species and the moderate network centrality, recorded in R2 and R9 sites, were signs of competition for habitat exploitation. In contrast, the higher number of species (around 30), the relatively low heterogeneity of interspecific relationships and the even distribution of influence among many species in R13 and SM-NAT sites indicated moderation of competition. The global network metrics in sites R13 and SM-NAT appeared to converge although the composition of the community did not. The local scale analysis revealed the coexistence of two separate and well organized faction/communities within the same site (Mediterranean and widespread species), while within most factions the analysis distinguished further sub-categories like those formed by species of poor habitats and species of disturbed habitats. The identification of critical scales provides powerful theoretical and practical means for conservation and restoration practices.

biocommunity structure reclamation glocal approach ego networks network metrics small worlds

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 4


[1]  Proulx, S.R., Promislow, D.E. and Phillips, P.C., “Network thinking in ecology and evolution”, TREE, 20, 345-353, 2005.
[2]  Bascompte, J., “Networks in ecology”, Basic Appl. Ecol., 8, 485-490, 2007.
[3]  Borrett, S.R., Moody, J. and Edelmann, A., “The rise of Network Ecology: Maps of the topic diversity and scientific collaboration”, Ecol. Model., 293, 111-127, 2014.
[4]  Deng, Y., Jiang, Y-H., Yang, Y., He, Z., Luo, F. and Zhou, J., “Molecular ecological network analyses”, BMC Bioinformatics, 13, 113, 2012.
[5]  Stamou, G.P. and Papatheodorou, E. M., “Studying the complexity of the secondary succession process in the soil of restored open mine lignite areas; the role of chemical template”, Appl. Soil Ecol., 103, 56-60, 2016.
[6]  Putnam, R.J., Community ecology, Chapman and Hall, London, 1994.
[7]  King, E.G., and Hobbs, R.J., “Identifying linkages among conceptual models of ecosystem degradation and restoration: towards an integrative framework”, Rest. Ecol., 14, 369-378, 2006.
[8]  D’Antonio, C. and Meyerson, L.A., “Exotic plant species as problems and solutions in ecological restoration: a synthesis”, Rest. Ecol., 10, 703-713, 2002.
[9]  Pickett, C.T.A. and McDonnell, M.J., “Changing perspectives in community dynamics: a theory of successional forces”, TREE, 4, 241-245, 1989.
[10]  Pickett, S., Meiners, S.J. and Cadenasso, M.L., “Domain and propositions of succession theory”, in Scheiner, S.M. and Willig, M.R. (Eds), The theory of ecology, Chicago, University of Chicago Press, 185-216, 2011.
[11]  De Souza Lauretto, M., Nakano, F., de Bragança Pereira, C.A. and Stem, J.M., “Intentional sampling by goal optimization with decoupling by stochastic perturbation”, in: XI Brazilian Meeting on Bayesian Statistics, AIP Conference., Proceedings, 1490, 189-201, 2012.
[12]  Bowker, M.A., Maestre, F.T. and Mau, R.L., “Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem multifunctionality”, Ecosystems, 16, 923-933, 2013.
[13]  Bowker, M.A., Mau, B.L., Maestre, F.T., Escolar, C. and Castillo-Monroy, A.P., “Functional profiles reveal unique ecological roles of various biological soil crust organisms”, Funct. Ecol., 25, 787-795, 2011.
[14]  Wilmanns, O., Ökologische Pflanzensoziologie, 4 Auflage. Heidelberg: Quelleund Meyer, 1989.
[15]  Euro+Med: Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity, 2006.
[16]  Greuter, W., Burdet, H. M. and Long, G., Med-Checklist 1, 3, 4. Conservatoire et Jardin botaniques de la Ville de Genève. Genève: Trust of Optima, 1984-1989.
[17]  Pianka, E.R., “The structure of lizard communities”, Ann. Rev. Ecol. Evol. Syst., 4, 53-74, 1973.
[18]  Borgatti, S.P., Everett, G. and Freeman, L.C., UCINET 6.0 version 1.00, Computer manual, Natick: Analytic Technologies, 1999.
[19]  Borgatti, S.P., Everett, M.G. and Freeman, L.C., UCINET for Windows: Software for social network analysis, Needham, MA: Analytic Technologies, 2002.
[20]  Huisman, M. and van Duijn, M.A.J., “Software for social network analysis”, in Carrington, P.J., Scott, J. and Wasserman, S. (Eds.), Models and methods in social network analysis, Cambridge, Cambridge University Press, 270-316, 2005.
[21]  O’Malley, A.J. and Marsden, P.V., “The analysis of social networks”, Health Serv. Outcomes Res. Methodol., 8, 222-269, 2008.
[22]  Borrett, S.R., Moody, J. and Edelmann, A., “The rise of Network Ecology: Maps of the topic diversity and scientific collaboration”, Ecol. Model., 293, 111-127, 2014.
[23]  Rampelotto, P.H., Barboza, A.D. M., Pereira, A.B., Triplett, E. W., Schaefer, C.E.G.R., Camargo, F.A.O. and Roesch, L.F.W., “Distribution and interaction patterns of bacterial communities in an ornithogenic soil of Seymour Island, Antarctica”, Microb. Ecol., 69, 684-694, 2014.
[24]  Jordano, P., Bascompte, J. and Olesen, J. M., “The ecological consequences of complex topology and nested structure in pollination webs”, in Waser, N.M. and Ollerton, J., (Eds.), Plant-pollinator interactions: from specialization to generalization, Chicago: University of Chicago Press, 173-199, 2006.
[25]  Wey, T., Blumstein, D.I., Shen, W. and Jordan, F., “Social network analysis on animal behaviour: a promising tool for the study of sociality”, Anim. Behav., 75, 333-344, 2008.
[26]  Hanneman, R.A.and Riddle, M., “Centrality and power”, in: Hanneman, R.A.and Riddle, M. (Eds), Introduction to social network methods, Riverside, CA: University of California.
[27]  Bascompte, J. and Stouffer, D.B., “The assembly and disassembly of ecological networks”, Philos. Trans. R. Soc. Lond. B, 364, 1781-1787, 2009.
[28]  Krackhardt, D. and Stern, R., “Informal networks and organizational crises: an experimental simulation”, Soc. Psychol. Q., 51, 123-140, 1988.
[29]  Freeman, L.C., “Centrality in social networks: conceptual clarification”, Soc. Networks, 1, 215-239, 1979.
[30]  Bonacich, P., “Power and centrality: A Family of Measures”, Am. J. Soc., 92, 1170-1182, 1987.
[31]  Friedkin, N.E., “Theoretical foundations for centrality measures”, Am. J.:Soc., 96, 1478-1504, 1991.
[32]  Newman, M.E.J., “The mathematics of networks”, in Blume, L. and Durlauf, S.D. (Eds.), The New Palgrave Encyclopedia of Economics, Basingstoke: Palgrave Macmillan, 1-12, 2008.
[33]  Kossinets, G. and Watts, D.J., “Origins of homophily in an evolving social network”, Am. J. Soc., 115, 405-450, 2009.
[34]  Halgin, D.S. and Borgatti, S.P., “An introduction to personal network analysis and tie churn statistics using E-NET”, Connections, 32, 37-48, 2012.
[35]  Tsiripidis, I., Bergmeier, E., Fotiadis, G. and Dimopoulos, P., “A new algorithm for the determination of differential taxa”, J. Veg. Sci., 20, 233-240, 2009.
[36]  Dimopoulos, P., Raus, T., Bergmeier, E., Constantinidis, T., Iatrou, G., Kokkini, S., Strid, A. and Tzanoudakis, D., “Vascular Plants of Greece: an annotated checklist”, Berlin: Botanic Garden and Botanical Museum Berlin-Dahlem, Athens: Hellenic Botanical Society, 2013.
[37]  Klotz, S., Kühn, I. and Durka, W., BIOLFLOR - Eine Daten bankzubiologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland, Bonn, Bundesamt für Naturschutz, 2002.
[38]  Montoya, J.M., Pimm, S.L. and Sole, R.V., “Ecological networks and their fragility”, Nature, 442, 259-264, 2006..
[39]  Hatzoudis, G.: Assessment of soil parameters and vegetation in restored sites of Tagarades landfill. Msc Thesis, AUTh University, Greece (in Greek with an English summary), 2012.
[40]  Parker, A., Daniel, S., Halgin, D.S. and Borgatti, S.P., “Dynamics of social capital: Effects of performance feedback on network change”, Organ. Stud., 1-23, 2015.
[41]  Schizas, D., Katrana, E. and Stamou G.P:, “Introducing network analysis into science education: Methodological research examining secondary school students’ understanding of ‘decomposition”,. Int. J. Env. Sci. Ed., 8, 175-198, 2013.
[42]  Lusseau, D., Whitehead, H. and Gero, S., “Incorporating uncertainty into the study of animal social networks”, Anim. Behav., 75, 1809-1815, 2008.
[43]  Kapagianni, P.D., Boutsis, G., Argyropoulou, M.D., Papatheodorou E.M. and Stamou, G.P., “The network of interactions among soil quality variables and nematodes: short-term responses to disturbances induced by chemical and organic disinfection”, Appl. Soil Ecol., 44, 67-74, 2010.
[44]  Scott, J., Social network analysis: A handbook, Second Edition, Newbury Park, CA: Sage, 2000.
[45]  Psorakis, I., Roberts, S.J., Rezek, I. and Sheldon, B.C.: “Inferring social network structure in ecological systems from spatio-temporal data streams”, J. Royal Soc. Interface, 2012.
[46]  Eviner, V.T. and Hawkes, C.V., “Embracing variability in the application of plant-soil interactions to the restoration of communities and ecosystems”, Rest. Ecol., 16, 713-729, 2008.
[47]  Palmer, M. A., Ambrose, R. F. and Poff, N. L., “Ecological theory and community restoration ecology”, Rest. Ecol., 5, 291-300, 1997.
[48]  van der Putten, W.H., Bardgett, R.D., Bever, J.D., Bezemer, T. M., Casper, B.B., Fukumi, T., Kardol, P., Klironomos, N., Kulmatiski, A., Schweitzer, J.A., Suding, K.N., Voorde, T.F.J. and Wardle, D.A., “Plant--soil feedbacks: the past, the present and future challenges”, J. Ecol., 101, 265-276, 2013.
[49]  Stadler, J., Klotz, S., Brandl, R., and Knapp, S., “Species richness and phylogenetic structure in plant communities: 20 years of succession”, Web Ecol., 17, 37-46, 2017.
[50]  Suding, K.N., Gross, K.L. and Houseman, G.R., “Alternative states and positive feedbacks in restoration ecology”, TREE, 19, 46-53, 2004.
[51]  Telesford, Q.K., Joyce, K.E., Hayasaka, S., Burdette, J.H. and Laurienti, P.J., “The ubiquity of small-world networks”, Brain Connect. 1, 367-375, 2011.
[52]  Kurvers, R.H.J.M., Krause, J., Croft, D.P., Wilson, A..D.M. and Wolf, M., “The evolutionary and ecological consequences of animal social networks: emerging issues”, TREE, 29, 326-335, 2014.
[53]  Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q. and Zhi, X., “Functional molecular ecological networks”, mBio, 2010.
[54]  Olesen, J.M., Bascompte, J., Dupont, Y.L. and Jordano, P., “The modularity of pollination networks”, PNAS (USA), 104, 19891-19896, 2007.