[1] | Gibson, G., Wang, Z., Hardacre, C., et al., “Insights into the mechanism of electrochemical ozone production via water splitting on the Ni and Sb doped SnO2 catalyst”, Phys. Chem. Chem. Phys. 19, 3800, Jan 2017. |
|
[2] | Kumar, B., Atla, V., Brian, J.P., et al., “Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion”, Angew. Chem. Int. Ed., 56, 3645, March 2017. |
|
[3] | Shirahata, Y., Oku, T., Kanamori, Y., Murozono, M., “Effects of heat treatment on fluorine-doped tin oxide anti-reflection films coated on silicon spheres”, Journal of the Ceramic Society of Japan, 125(3), 145, March 2017. |
|
[4] | Yalcinkaya, F. and Lubasova, D., “Quantitative evaluation of antibacterial activities of nanoparticles (ZnO, TiO2, ZnO/TiO2, SnO2, CuO, ZrO2, and AgNO3) incorporated into polyvinyl butyral nanofibers”, Polym. Adv. Technol., 28, 137, Aug 2017. |
|
[5] | Zhao, K., Zhang, L., Xia, R., et al., “SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries”, Small, 12, 588, Dec 2016. |
|
[6] | Zhou, X., Yu, L., Lou, X.W., “Formation of uniform N-doped carbon-coated SnO2 submicroboxes with enhanced lithium storage properties”, Adv. Energy Mater., 6, 1600451, May 2016. |
|
[7] | Hasan, A.S., Moyer, K., Ramachandran, B.R., Wick, C.D., “Comparison of storage mechanisms in RuO2, SnO2, and SnS2 for lithium-ion battery anode materials”, J. Phys. Chem. C, 120(4), 2036, Jan 2016. |
|
[8] | Barbe, J., Tietze, M.L., Neophytou, M., et al., “Amorphous tin oxide as a low-temperature-processed electron-transport layer for organic and hybrid perovskite solar cells”, ACS Appl. Mater. Interfaces, accepted paper, 2017. |
|
[9] | Mashreghi A., and Zare, H., “Electrochemical deposition of Ni on F-doped SnO2 substrate and its post-annealing for use as current collector of dye-sensitized solar cell”, J. Solid State Electrochem., 20, 2693, Oct 2016. |
|
[10] | Lin, Y.-C. and Lee, M.–W., “Bi2S3 liquid-junction semiconductor-sensitized SnO2 solar cells”, J. Electrochem. Soc., 161, H1, Oct 2014. |
|
[11] | Wang, B., Zhu, L.F., Yang, Y.H., Xu, N.S., Yang, G.W., “Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen”, J. Phys. Chem. C, 112(17), 6643, Apr 2008. |
|
[12] | Leite, E.R., Weber, I.T., Longo, E., Varela, J.A., “A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications”, Adv. Mater., 12, 965, June 2000. |
|
[13] | Barsan, N. and Weimar U., “Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity”, J. Phys.: Condens. Matter, 15, R813, May 2003. |
|
[14] | Li, F., Song, J., Yang, H., et al., “One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors”, Nanotechnology, 20, 455602, Oct 2009. |
|
[15] | Wu, N.–L., “Nanocrystalline oxide supercapacitors”, Materials Chemistry and Physics, 75, 6, April 2002. |
|
[16] | Prasad, K.R. and Miura, N., “Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors”, Electrochemistry Communications, 6(8), 849, Aug 2004. |
|
[17] | Datolli, E.N., Wan, Q., Guo, W., Chen, Y., Pan, X., Lu, W., “Fully transparent thin-film transistor devices based on SnO2 nanowires”, Nano Lett., 7(8), 2463, June 2007. |
|
[18] | Jang, J., Kitsomboonloha, R., Swisher, S.L., et al., “Transparent high-performance thin film transistors from solution-processed SnO2/ZrO2 gel-like precursors”, Adv. Mater., 25, 1042, Nov 2013. |
|
[19] | Kim, W.J., Koo, W.H., Jo, S.J., et al., “Ultraviolet-enduring performance of flexible pentacene TFTs with SnO2 encapsulation films” Electrochem. Solid-State Lett., 9(7), G251, May 2006. |
|
[20] | Fang, M., Zhang, L., Tan, X., et al., “Fabrication and photoluminescence property of SnO2 microtowers with interstitial tin ions”, J. Phys. Chem. C, 113(22), 9676, May 2009. |
|
[21] | Zhu, J., Lu, Z., Aruna, S.T., Aurbach, D., Gedanken, A., “Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes”, Chem. Mater., 12(9), 2557, Aug 2000. |
|
[22] | Chiu, H.C. and Yeh, C.–S., “Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol”, J. Phys. Chem. C, 111(20), 7256, April 2007. |
|
[23] | Anandan, K. and Rajendran, V., “Size controlled synthesis of SnO2 nanoparticles: facile solvothermal process”, Journal of Non-Oxide Glasses, 2(2), 83 May 2010. |
|
[24] | Luo, S., Fan, J., Liu, W., et al., “Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts”, Nanotechnology, 17(6), 1695, Feb 2006. |
|
[25] | Liu, Z., Zhang, D., Han, S., et al., “Laser ablation synthesis and electron transport studies of tin oxide nanowires”, Adv. Mater., 15, 1754, Oct 2003. |
|
[26] | Qin, L., Xu, J., and Dong, X., et al., “The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors”, Nanotechnology, 19(18), 185705, April 2008. |
|
[27] | Hu, J.Q., Ma, X.L., Shang, N.G., et al., “Large-scale rapid oxidation synthesis of SnO2 nanoribbons”, J. Phys. Chem. B, 106(15), 3823, March 2002. |
|
[28] | Kong, X., Yu, D., and Li, Y., “Synthesis of SnO2 nanoribbons by direct oxidation of tin powders”, Chemistry Letters, 32(1), 100, 2003. |
|
[29] | Liu, Y., Zheng, C., Wang, W., “Synthesis and characterization of rutile SnO2 nanorods”, Adv. Mater., 13, 1883, Dec 2001. |
|
[30] | Xu, X., Zhuang, J., and Wang, X., “SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties”, J. Am. Chem. Soc., 130(37), 12527, Aug 2008. |
|
[31] | Zhu, H., Yang, D., Yu, G., and Yao, K., “A simple hydrothermal route for synthesizing SnO2 quantum dots”, Nanotechnology, 17(9), 2386, Apr 2006. |
|
[32] | Wang, W.–W. and Yao, J.–L., “Hydrothermal synthesis of SnO2/Fe3O4 nanocomposites and their magnetic property”, J. Phys. Chem. C, 113(8), 3070, Jan 2009. |
|
[33] | Yang, H.X., Qian, J.F., Chen, Z.X., et al., “Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment”, J. Phys. Chem C, 111(38), 14067, Sept 2007. |
|
[34] | Chen, D. and Gao, L., “Facile synthesis of single-crystal tin oxide nanorods with tunable dimensions via hydrothermal process”, Chemical Physics Letters, 398(1 – 3), 201, Nov 2004. |
|
[35] | Niu, M., Huang, F., Ciu, L., et al., “Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures”, ACS Nano, 4(2), 681, Jan 2010. |
|
[36] | Liu, Z., Sun, D.D., and Guo, P., and Leckie, J.O., “An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method”, Nano Lett., 7(4), 1081, Sept 2007. |
|
[37] | Patil, G.E., Kajale, D.D., and Chavan, D.N., et al., “Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis”, Bull. Mater. Sci., 34, 1, Feb 2011. |
|
[38] | Liu, Y., Koep, E., and Liu, M., “A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition”, Chem. Mater., 17(15), 3997, June 2005. |
|
[39] | Davazoglou, D., “Optical properties of SnO2 thin films grown by atmospheric pressure chemical vapour deposition oxiding SnCl4”, Thin Solid Films, 302(1-2), 204, June 1997. |
|
[40] | Yin, W, Wei, B., and Hu, C., “In situ growth of SnO2 nanowires on the surface of Au-coated Sn grains using water-assisted chemical vapor deposition”, Chemical Physics Letters, 471(1-3), 11, 2009. |
|
[41] | Olivi, P., Pereira, E.C., Longo, E., et al., “Preparation and characterization of a dip‐coated SnO2 film for transparent electrodes for transmissive electrochromic devices”, J. Electrochem. Soc., 140(5), L81, Feb 1993. |
|
[42] | Novoselov, K.S., Geim, A.K., Morosov, S.V., et al., “Electric field effect in atomically thin carbon films”, Science 306(5696), 666, Oct 2004. |
|
[43] | Singh, D.K., Iyer, P.K, and Giri, P.K., “Improved chemical synthesis of graphene using a safer solvothermal route”, International Journal of Nanoscience, 10(1), 1, February & April 2011. |
|