[1] | Abraham, R. T., and Tibbetts, R. S. 2005. Cell biology: Guiding ATM to broken DNA. Science, 308: 510-511. |
|
[2] | Kinbara, K., and Aida, T. 2005. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105: 1377-1400. |
|
[3] | Patel, G. M., Patel, G. C., Patel, R. B., Patel, J. K., and Patel, M. 2006. Nanorobot: A versatile tool in nanomedicine. Journal of Drug Targeting, 14 (2): 63-7. |
|
[4] | Balasubramanian, S., Kagan, D., Jack Hu, C. M.; Campuzano, S.; Lobo-Castañon, M. J.; Lim, N.; Kang, D. Y.; Zimmerman, M.; Zhang, L.; Wang, J. 2011. Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media. Angewandte Chemie International Edition. 50 (18): 4161-4164. |
|
[5] | Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 5th ed. (W. H. Freeman, New York, 2006). |
|
[6] | Schliwa, M., and Günther Woehlke. 2003. Review article Molecular motors. Nature, 422: 759-765. |
|
[7] | Boyer, P. D. 1999. Molecular motors: What makes ATP synthase spin? Nature, 402: 247-249. |
|
[8] | Bray, D. 1992. Cell Movements: From Molecules to Motility, Garland, New York. |
|
[9] | Peter, S. and Christensen, S. T. 2008. Structure and function of mammalian cilia. Histochemistry and Cell Biology. Springer Berlin / Heidelberg, 129 (6): 688. |
|
[10] | Yan, H., Zhang, X. P., Shen, Z. Y. & Seeman, N. C. 2002. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62-65. |
|
[11] | Bath, J., Green, S. J. and Turberfield, A. J. 2005. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Edn., 44: 4358-4361. |
|
[12] | Alberti, P. and Mergny, J. L. 2003. DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl Acad. Sci. USA 100, 1569-1573. |
|
[13] | Hess, H. & Bachand, G. D. 2005. Biomolecular motors. Nanotoday, 8: 22-29. |
|
[14] | Hess, H. & Vogel, V. 2001. Molecular shuttles based on motor proteins: active transport in synthetic environments. Rev. Mol. Biotechnol. 82, 67-85. |
|
[15] | Vacek, J. and Michl, J. 1997. A molecular “Tinkertoy” construction kit: Computer simulation of molecular propellers, New J. Chem., 21: 1259. |
|
[16] | Simpson, C. D., Mattersteig, G., Martin, K., Gherghel, L., Bauer, R. E., Rader, H. J., and Mullen, K. 2004. Nanosized molecular propellers by cyclodehydrogenation of polyphenylene dendrimers, J. Am. Chem. Soc., 126: 3139. |
|
[17] | Stanier, C. A., o'Connell, M. J., Anderson, H. L., and Clegg, W. 2001. Synthesis of fluorescent stilbene and tolan rotaxanes by Suzuki coupling. Chem. Commun., (5): 493-494. |
|
[18] | Bravo, J. A., Raymo, F. M., Stoddart, J. F., White, A. J. P., and Williams, D. J. 1998. High Yielding Template-Directed Syntheses of [2] Rotaxanes. Eur. J. Org. Chem., 1998 (11): 2565-2571. |
|
[19] | Petitjean, A., Khoury, R. G., N. Kyritsakas, N., and Lehn, J. M. 2004. Dynamic Devices. Shape Switching and Substrate Binding in Ion-Controlled Nanomechanical Molecular Tweezers. J. Am. Chem. Soc. 126 (21): 6637-6647. |
|
[20] | Sygula, A., Fronczek, F. R., Sygula, R., Rabideau, P. W., and Olmstead, M. M. 2007. A Double Concave Hydrocarbon Buckycatcher. J. Am. Chem. Soc., 129 (13): 3842-3843. |
|
[21] | Cavalcanti, A., Shirinzadeh, B., Freitas, Jr. R. A, and Hogg, T. 2008. Nanorobot architecture for medical target identification. Nanotechnology. 19 (1): 015103(15pp). |
|
[22] | de Silva, A., P., and McClenaghan, N. D. 2000. Proof-of-Principle of Molecular-Scale Arithmetic. J. Am. Chem. Soc. 122 (16): 3965-3966. |
|
[23] | Koçer, A., Walko, M., Meijberg, W. & Feringa B. L. 2005. A light-actuated nanovalve derived from a channel protein. Science, 309: 755-758. |
|
[24] | Browne, W. R., and Feringa, B. L. 2006. Making molecular machines work. Nature Nanotechnology, 1: 25-35. |
|
[25] | Astumian, R. D. Making molecules into motors. Sci. Am. 285, 45-51 (2001). |
|
[26] | Astumian, R. D. 1997. Thermodynamics and kinetics of a brownian motor. Science, 276; 917-922. |
|
[27] | Rozenbaum, V. M., Yang, D.-Y., Lin, S. H. & Tsong, T. Y. 2004. Catalytic wheel as a brownian motor. J. Phys. Chem. B 108, 15880-15889. |
|
[28] | Hawthorne, M. F. et al. 2004. Electrical or photocontrol of the rotary motion of a metallacarborane. Science, 303: 1849-1851. |
|
[29] | Garcia-Garibay, M. A. 2004. Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure. Proc. Natl Acad. Sci. USA 102, 10771-10776. |
|
[30] | Khuong, T.-A. V., Nuñez, J. E., Godinez, C. E. and Garcia-Garibay, M. A. 2006. Crystalline molecular machines: A quest toward solid-state dynamics and function. Acc. Chem. Res. 39, 413-422. |
|
[31] | Horinek, D. and Michl, J. 2005. Surface-mounted altitudinal molecular rotors in alternating electric field: single-molecule parametric oscillator molecular dynamics. Proc. Natl Acad. Sci. USA 102, 14175-14180. |
|
[32] | Ozin, G. A., Manners, I., Fournier-Bidoz, S., and Arsenault, A. 2005. Dream machines. Adv. Mater. 17, 3011-3018. |
|
[33] | Whitesides, G. M. 2001. The once and future nanomachine. Biology outmatches futurists' most elaborate fantasies for molecular robots. Sci. Am., 285: 78-84. |
|
[34] | Kline, T. R., Paxton, W. F., Mallouk, T. E. & Sen, A. 2005. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Edn 44: 744-746. |
|
[35] | Paxton, W. F. et al. 2004. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424-13431. |
|
[36] | Ballardini, R., Balzani, V., Credi, A., Gandolfi, M. T., and Venturi, M. 2001. Artificial Molecular-Level Machines: Which Energy To Make Them Work?. Acc. Chem. Res., 34 (6): 445-455. |
|
[37] | Kelly, T. R., De Silva, H., and Silva, R. A. 1999. Undirectional rotary motion in a molecular system. Nature, 401: 150-152. |
|
[38] | Fletcher, S. P., Dumur, F., Pollard, M. M., and Feringa, B. L. 2005. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science, 310: 80-82. |
|
[39] | Leigh, D. A., Wong, J. K. Y., Dehez, F., and Zerbetto, F. 2003. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature, 424: 174-179. |
|