Nanoscience and Nanotechnology Research
ISSN (Print): 2372-4668 ISSN (Online): 2372-4676 Website: https://www.sciepub.com/journal/nnr Editor-in-chief: Mehrdad Hamidi, Javad Verdi
Open Access
Journal Browser
Go
Nanoscience and Nanotechnology Research. 2017, 4(3), 98-105
DOI: 10.12691/nnr-4-3-3
Open AccessResearch Article

Molecular Machines: I. An Overview of Biological and Synthetic Angstromic Devices

Sherif S. Z. Hindi1,

1Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdullaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia

Pub. Date: May 09, 2017
(This article belongs to the Special Issue Crystalline Cellulose: The Magic Industrial Material.)

Cite this paper:
Sherif S. Z. Hindi. Molecular Machines: I. An Overview of Biological and Synthetic Angstromic Devices. Nanoscience and Nanotechnology Research. 2017; 4(3):98-105. doi: 10.12691/nnr-4-3-3

Abstract

A molecular machine is a group of molecular components that are able to produce quasi-mechanical movements when exposed to specific stimuli. There are three broad divisions of the molecular machines, namely natural or biological, synthetic, and natural-synthetic hybrid machines. Biological motors convert chemical energy to produce linear or rotary motion as well as controlling many biological functions. Examples of the linear motions are proteins, muscle contraction, intracellular transport, signal transduction, ATP synthase, membrane translocation proteins and the flagella motor. The rotary motor example of biological molecular machines is the synthesis and hydrolysis of ATP. Synthetic molecular machine includes motors, propellers, switches, shuttles, tweezers, sensors, logic gates. Natural-synthetic hybrid systems are mechanical motor such as those inspired from DNA-based structures.

Keywords:
molecular machines rotors propeller switches shuttle tweezers valves

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Abraham, R. T., and Tibbetts, R. S. 2005. Cell biology: Guiding ATM to broken DNA. Science, 308: 510-511.
 
[2]  Kinbara, K., and Aida, T. 2005. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105: 1377-1400.
 
[3]  Patel, G. M., Patel, G. C., Patel, R. B., Patel, J. K., and Patel, M. 2006. Nanorobot: A versatile tool in nanomedicine. Journal of Drug Targeting, 14 (2): 63-7.
 
[4]  Balasubramanian, S., Kagan, D., Jack Hu, C. M.; Campuzano, S.; Lobo-Castañon, M. J.; Lim, N.; Kang, D. Y.; Zimmerman, M.; Zhang, L.; Wang, J. 2011. Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media. Angewandte Chemie International Edition. 50 (18): 4161-4164.
 
[5]  Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 5th ed. (W. H. Freeman, New York, 2006).
 
[6]  Schliwa, M., and Günther Woehlke. 2003. Review article Molecular motors. Nature, 422: 759-765.
 
[7]  Boyer, P. D. 1999. Molecular motors: What makes ATP synthase spin? Nature, 402: 247-249.
 
[8]  Bray, D. 1992. Cell Movements: From Molecules to Motility, Garland, New York.
 
[9]  Peter, S. and Christensen, S. T. 2008. Structure and function of mammalian cilia. Histochemistry and Cell Biology. Springer Berlin / Heidelberg, 129 (6): 688.
 
[10]  Yan, H., Zhang, X. P., Shen, Z. Y. & Seeman, N. C. 2002. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62-65.
 
[11]  Bath, J., Green, S. J. and Turberfield, A. J. 2005. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Edn., 44: 4358-4361.
 
[12]  Alberti, P. and Mergny, J. L. 2003. DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl Acad. Sci. USA 100, 1569-1573.
 
[13]  Hess, H. & Bachand, G. D. 2005. Biomolecular motors. Nanotoday, 8: 22-29.
 
[14]  Hess, H. & Vogel, V. 2001. Molecular shuttles based on motor proteins: active transport in synthetic environments. Rev. Mol. Biotechnol. 82, 67-85.
 
[15]  Vacek, J. and Michl, J. 1997. A molecular “Tinkertoy” construction kit: Computer simulation of molecular propellers, New J. Chem., 21: 1259.
 
[16]  Simpson, C. D., Mattersteig, G., Martin, K., Gherghel, L., Bauer, R. E., Rader, H. J., and Mullen, K. 2004. Nanosized molecular propellers by cyclodehydrogenation of polyphenylene dendrimers, J. Am. Chem. Soc., 126: 3139.
 
[17]  Stanier, C. A., o'Connell, M. J., Anderson, H. L., and Clegg, W. 2001. Synthesis of fluorescent stilbene and tolan rotaxanes by Suzuki coupling. Chem. Commun., (5): 493-494.
 
[18]  Bravo, J. A., Raymo, F. M., Stoddart, J. F., White, A. J. P., and Williams, D. J. 1998. High Yielding Template-Directed Syntheses of [2] Rotaxanes. Eur. J. Org. Chem., 1998 (11): 2565-2571.
 
[19]  Petitjean, A., Khoury, R. G., N. Kyritsakas, N., and Lehn, J. M. 2004. Dynamic Devices. Shape Switching and Substrate Binding in Ion-Controlled Nanomechanical Molecular Tweezers. J. Am. Chem. Soc. 126 (21): 6637-6647.
 
[20]  Sygula, A., Fronczek, F. R., Sygula, R., Rabideau, P. W., and Olmstead, M. M. 2007. A Double Concave Hydrocarbon Buckycatcher. J. Am. Chem. Soc., 129 (13): 3842-3843.
 
[21]  Cavalcanti, A., Shirinzadeh, B., Freitas, Jr. R. A, and Hogg, T. 2008. Nanorobot architecture for medical target identification. Nanotechnology. 19 (1): 015103(15pp).
 
[22]  de Silva, A., P., and McClenaghan, N. D. 2000. Proof-of-Principle of Molecular-Scale Arithmetic. J. Am. Chem. Soc. 122 (16): 3965-3966.
 
[23]  Koçer, A., Walko, M., Meijberg, W. & Feringa B. L. 2005. A light-actuated nanovalve derived from a channel protein. Science, 309: 755-758.
 
[24]  Browne, W. R., and Feringa, B. L. 2006. Making molecular machines work. Nature Nanotechnology, 1: 25-35.
 
[25]  Astumian, R. D. Making molecules into motors. Sci. Am. 285, 45-51 (2001).
 
[26]  Astumian, R. D. 1997. Thermodynamics and kinetics of a brownian motor. Science, 276; 917-922.
 
[27]  Rozenbaum, V. M., Yang, D.-Y., Lin, S. H. & Tsong, T. Y. 2004. Catalytic wheel as a brownian motor. J. Phys. Chem. B 108, 15880-15889.
 
[28]  Hawthorne, M. F. et al. 2004. Electrical or photocontrol of the rotary motion of a metallacarborane. Science, 303: 1849-1851.
 
[29]  Garcia-Garibay, M. A. 2004. Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure. Proc. Natl Acad. Sci. USA 102, 10771-10776.
 
[30]  Khuong, T.-A. V., Nuñez, J. E., Godinez, C. E. and Garcia-Garibay, M. A. 2006. Crystalline molecular machines: A quest toward solid-state dynamics and function. Acc. Chem. Res. 39, 413-422.
 
[31]  Horinek, D. and Michl, J. 2005. Surface-mounted altitudinal molecular rotors in alternating electric field: single-molecule parametric oscillator molecular dynamics. Proc. Natl Acad. Sci. USA 102, 14175-14180.
 
[32]  Ozin, G. A., Manners, I., Fournier-Bidoz, S., and Arsenault, A. 2005. Dream machines. Adv. Mater. 17, 3011-3018.
 
[33]  Whitesides, G. M. 2001. The once and future nanomachine. Biology outmatches futurists' most elaborate fantasies for molecular robots. Sci. Am., 285: 78-84.
 
[34]  Kline, T. R., Paxton, W. F., Mallouk, T. E. & Sen, A. 2005. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Edn 44: 744-746.
 
[35]  Paxton, W. F. et al. 2004. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424-13431.
 
[36]  Ballardini, R., Balzani, V., Credi, A., Gandolfi, M. T., and Venturi, M. 2001. Artificial Molecular-Level Machines: Which Energy To Make Them Work?. Acc. Chem. Res., 34 (6): 445-455.
 
[37]  Kelly, T. R., De Silva, H., and Silva, R. A. 1999. Undirectional rotary motion in a molecular system. Nature, 401: 150-152.
 
[38]  Fletcher, S. P., Dumur, F., Pollard, M. M., and Feringa, B. L. 2005. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science, 310: 80-82.
 
[39]  Leigh, D. A., Wong, J. K. Y., Dehez, F., and Zerbetto, F. 2003. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature, 424: 174-179.