[1] | Hindi, S. S. Z., and Abohassan, R. A. 2016. Cellulosic microfibril and its embedding matrix within plant cell wall. International Journal of Innovative Research in Science, Engineering and Technology, 5 (3): 2727-2734. |
|
[2] | Popper, Z. A. 2008. Evolution and diversity of green plant cell walls. Current Opinion in Plant Biology, 11: 286-292. |
|
[3] | Panshin, A. J. and de Zeeuw, C. 1980. Textbook of Wood Technology: Structure, identification, properties, and uses of the commercial woods of the United States and Canada. 4th ed. McGraw-Hill Series in Forest Resources. New York, McGraw-Hill Book Co. |
|
[4] | Huber, T., Mussig, J., Curnow, O., Pang, O., Bickerton, S., and Staiger, M. P. 2012. A critical review of all-cellulose composites. J Mater Sci., 47: 1171-1186. |
|
[5] | Solomon, E., Berg, L., and Martin, D. W. 2004. Biology. Cengage Learning, 7th ed.: 1024 pp. |
|
[6] | Sjostrom, E. 1981. Wood Chemistry: Fundamentals and applications, Academic Press, New York, 169-189. |
|
[7] | Hindi, S. S. Z. 2016. The interconvertiblity of cellulose’s allomorphs. International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET). 6 (1): 715-722. |
|
[8] | Daniel, J.R. 1985. Cellulose structure and properties. In Encyclopedia of Polymer Science and Engineering; Kroschwitz, J.I., Ed., Wiley-Interscience Publication John Wiley & Sons: New York, NY, USA. 3: 86-123. |
|
[9] | Sugiyama, J., Okano, T., Yamamoto, H. and Horii, F. 1990. Transformation of valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules, 23: 3196-3198. |
|
[10] | Sugiyama, J.; Persson, J.; Chanzi, H. 1991. Combined infrared and electron diffraction study of polymorphism of native cellulose. Macromolecules. 24: 2461-2466. |
|
[11] | Dinand, E., Vignon, M., Chanzy, H. and Heux, L. 2002. Mercerization of primary wall cellulose and its implication for the conversion of cellulose I to cellulose II. Cellulose. 9: 7-18. |
|
[12] | Saxena, I. M. and Brown, R. M. J. 2005. Cellulose Biosynthesis: Current views and envolving Concepts. Ann. Bot. 96: 9-21. |
|
[13] | Tappi, T 203cm-99. 2009. Alpha-, beta- and gamma-cellulose in pulp. Atlanta, GA, USA. |
|
[14] | Hallac, B. B. and Ragauskas, A. J. 2011, Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioprod. Bioref., 5: 215-225. |
|
[15] | Keegstra, K. 2010. Plant Cell Walls. Plant Physiology, 154 (2): 483-486. |
|
[16] | Kamel, S. 2007. Nanotechnology and its application in lignocellulosics composites, a mini review. Express Polymer Letters, 1: 546-575. |
|
[17] | Wang, S, Cheng, Q, Rials, T. G. and Lee, S. H. 2008. Cellulose microfibril/nanofibril and its nanocompsites. Paper presented at the 8th Pacific Rim Bio-Based Composites Symposium during 20-23 November at Kuala Lampur, Malaysia. |
|
[18] | Miller, J. 2015. Nanocellulose state of the industry. http://www.tappinano.org/media/1114/cellulose-nanomaterials-production-state-of-the-industry-dec-2015.pdf. |
|
[19] | Habibi, Y., Lucia, L. A. and Rojas, O. J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110: 3479-3500. |
|
[20] | Ankerfors, M. 2013. Possible applications for nanocellulose in packing. http://www.inspecta.com/Documents/Sweden/Academy/Skogsindustridagarna%202014/Mikael%20Ankerfors_ Billerud%20-%20for%20delegates.pdf. |
|
[21] | Kalashnikova, I., Bizot, H., Bertoncini, P., Cathala, B. and Capron, I. 2013. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter, 9: 952-959. |
|
[22] | de Souza Lima, M. M. and Borsali, R. 2004. Rodlike cellulose microcrystals: Structure, properties and applications. Macromol. Rapid Commun. 25: 771-787. |
|
[23] | Ciolacu, D. and Popa, V. I. 2005. Structural changes of cellulose determined by dissolution in aqueous alkali solution. Cellulose Chemistry and Technology, 39 (3-4): 179-188. |
|
[24] | Ciolacu, D., Popa, V. I. and Ritter, H. 2006. Cellulose derivatives with adamantoyl groups. Journal of Applied Polymer Science, 100 (1): 105-112. |
|
[25] | Zugenmaier, P. 2008. In Crystalline cellulose and derivatives: Characterization and structures. Springer Series in Wood Science, Springer-Verlag, Berlin: 175-206. |
|
[26] | Khazraji, A. C. and Robert, S. 2013. Amorphous regions: A novel approach using molecular modeling. Journal of Nanomaterials. 2013: 10 pp. |
|
[27] | Siqueira, G., Bras, J., and Dufresne, A. 2010. Luffa cylindrica as a lignocellulosic resource of fiber, microfibrillated cellulose, and cellulose nanocrystals. BioResources, 5 (2): 727-740. |
|
[28] | Frone, A. N., Panaitrscu, D. M., Donescu, D. 2011. Some aspects concerning the isolation of cellulose micro- and nano- fibers. Universitatea Politehnica din Bucuresti (U.P.B.): The Scientific Bulletin journal, Series B, 73: 133-152. |
|
[29] | Dufresne, A. 2008. Cellulose-based composites and nanocomposites. In Monomers, Polymers and Composites from Renewable Resources, 1st ed.; Gandini, A., Belgacem, M. N., Eds.; Elsevier: Oxford, UK: pp. 401-418. |
|
[30] | Lu, Y. S., Weng, L. H., and Cao, X. D. 2005. Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromolecular Bioscience, 5: 1101-1107. |
|
[31] | Zhang, Y., Nypelo, T., Salas, C., Arboleda, J., Hoeger, I. C., Orlando J., and Rojas, O. J. 2013. Cellulose nanofibrils: From strong materials to bioactive surfaces. Journal of Renewable Materials, 1 (3): 195-211. |
|
[32] | Aullin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Osterberg, M., and Wagberg, L. 2009. Nanoscale cellulose films with different crystallinities and mesostnictures: Their surface properties and interaction with water. Langmuir, 25(13): 7675-7685. |
|
[33] | Yuwawech, K., Wootthikanokkhan, J., and Tanpichai, S. 2015. Effects of two different cellulose nanofiber types on properties of poly(vinyl alcohol) composite films. Journal of Nanomaterials. Vol. 2015. 10 pp. |
|
[34] | Chakraborty, A., Sain, M. and Kortschot, M., 2006. Reinforcing potential of wood pulp derived microfibres in a PVA matrix. Holzforschung, 60 (1): 53-58. |
|
[35] | Peng, B. L,, Dhar, N., Liu, H. L., Tam, K. C. 2011. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. The Canadian Journal of Chemical Engineering. 89 (5): 1191-1206. |
|
[36] | Moon, R. J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 40: 3941-3994. |
|
[37] | Hindi, S. S. Z. 2017. Suitability of date palm leaflets for sulphated cellulose nanocrystals synthesis. Nanoscience and Nanotechnology Research, 4 (1): 7-16. |
|
[38] | Lagerwall, J. P. F., Schütz, C., Salajkova, M., Noh, J. H., Park, J. H., Scalia, G. and Bergström, L. 2014. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. Nature Publishing Group, Asia Materials: 6, e80. |
|
[39] | Samir, M. A. S. A.; Alloin, F.; Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6: 612-626. |
|
[40] | Beck-Candanedo, S.; Roman, M.; Gray, D. 2005. Effect of conditions on the properties behavior of wood cellulose nanocrystals suspensions. Biomacromolecules. 6: 1048-1054. |
|
[41] | Oun, A. A. and Rhim, J.-W. 2016. Characterization of nanocelluloses isolated from ushar (Calotropis procera) seed fiber: Effect of isolation method. Materials Letters, 168: 146-150. |
|
[42] | Siro, I. & Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17: 459-494. |
|
[43] | Lee, K.-Y., Aitomaki, Y., Berglund, L. A., Oksman, K. and Bismarck, A. 2014. On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 105: 15-27. |
|
[44] | Pan, M., Zhou, X. and Chen, M. 2013. Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioResources, 8 (1): 933-943. |
|
[45] | Yano, H., Sugiyama, J., Nakagaito, A.N., Nogi, M., Matsuura, T., Hikita, M. and Handa, K., 2005. Optically transparent composites reinforced with networks of bacterial nanofibers. Advanced Materials, 17 (2): 153-155. |
|
[46] | Zimmermann, T., Pohler, E. and Geiger, T. 2004. Cellulose fibrils for polymer reinforcement. Advanced Engineering Materials, 6 (9): 754-761. |
|
[47] | Nakagaito, A.N. and Yano, H. 2005. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Applied Physics A, 80: p. 155-159. |
|
[48] | Berglund, L., 2005. Cellulose-based nanocomposites. In: A. K. M. Mohanty, M.; Drzal, L. (Editor), Natural fibers, biopolymers, and biocomposites. Taylor & Francis: 807-832. |
|
[49] | Plomion, C., Leprovost, G., Stokes, A. 2001. Wood formation in trees. Plant Physiolog. 127: 1513-1523. |
|
[50] | Barnett, J.R., Bonham, V.A. 2004. Cellulose microfibril angle in the cell wall of wood fibres. Biological reviews of the Cambridge Philosophical Society, 79: 461-472. |
|
[51] | Wang J., Howles, P. A., Cork, A. H., Birch, R. J., and Williamson, R. E. 2006. Chimeric proteins suggest that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific sites in the cellulose synthase of primary walls. Plant Physiol, 142: 685-695. |
|
[52] | Monschein, M., Reisinger, C., and Nidetzky, B. 2013. Enzymatic hydrolysis of microcrystalline cellulose and pretreated wheat straw: A detailed comparison using convenient kinetic analysis. Bioresource Technology. 128: 679-687. |
|
[53] | El-Sakhawy M., and Hassan, M. L. 2007. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate Polymers, 67: 1-10. |
|
[54] | Chauhan, Y. P., Sapkal, R. S., Sapkal, V. S., and Zamre, G. S. 2009. Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries). International Journal of Chemical Sciences. 7 (2): 681-688. |
|
[55] | Hindi, S. S. Z. 2017. Microcrystalline cellulose: The inexhaustible treasure for pharmaceutical industry. Nanoscience and Nanotechnology Research, 4 (1): 22-31. |
|
[56] | Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg,M., Ruokolainen,J., Laine, J., Larsson, T. P., Ikkala, O., and Lindstorm, T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8 (6): 1934-1941. |
|
[57] | Anonymous. What is cellulose filament?. http://filocell.com/en/the-product/. |
|
[58] | Anonymous, 2013. Cellulose Filaments: An exciting opportunity for Canada’s forest sector. https://fpinnovations.ca/media/factsheets/Documents/cellulose-filaments.pdf. |
|
[59] | Lundahl, M. J., Cunha, A. G., Rojo, E., Papageorgiou, A. C., Rautkari, L., Arboleda, J. C. and Rojas, O. J. 2016. Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Scientific Reports, 6: 30695. |
|
[60] | Bajpai, P. 2012. Biotechnology for Pulp and Paper Processing. springer: 414 pp. http://www.springer.com/978-1-4614-1408-7. |
|
[61] | Ding, S.-Y., Zhao, S. and Zeng, Y. 2014. Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose, 21, 863-871. |
|
[62] | Henriksson, M., Henriksson, G., Berglund, L. A. and Lindström, T. 2007. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43 (8): 3434-3441. |
|
[63] | Hubbe, M.A., Rojas, O.J., Lucia, A.L., Sain, M. 2008. Cellulosic nanocomposites: a review. Bioresources 3:929-980. |
|
[64] | Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. and Dorris, A. 2011. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed., 50: 5438-5466. |
|
[65] | Aziz, F. A., Ismail, A., Wan Yunus, W. M. Z. et al. 2016. The Treated Cellulose Micro/Nano Fibers (CMNF) from Bioresources in Malaysia. Materials Science Forum, 846: 434-439. |
|
[66] | Azraaie, N., Zainul Abidin, N. A. M., Aziz, F. A., et al. Cellulose Microfibrils/Nanofibrils (CMNF) Produced from Banana (Musa acuminata) Pseudo-Stem Wastes: Isolation and Characterization. Materials Science Forum, 846: 448-453. |
|
[67] | Herrick, F.W.C., R. L.; Hamilton, J. K.; Sandberg, K. R., 1983. Microfibrillated cellulose: morphology and accessibility. Journal of Applied Polymer Science: Applied Polymer Symposium, 37: 797-813. |
|
[68] | Spence, K. L., Venditti, R. A., Rojas, O. J., Habibi, Y., and Pawlak, J. J. 2010. The effect of chemical composition on microfibrilluar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose: 17: 835-848. |
|
[69] | Thoorens, G., Krier, F., Leclercq, B., Carlin, B. and Evrard, B. 2014. Microcrystalline cellulose, a direct compression binder in a quality by design environment: A review. International Journal of Pharmaceutics, 473 (1-2): 64-72. |
|
[70] | Chinga-Carrasco, G. 2011. Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Research Letters, 6 (1): 417. |
|
[71] | Palme, A., Theliander, H. and Brelid, H. 2016. kraft pulp, dissolving pulps and cotton textile cellulose. Carbohydrate Polymers, 136: 1281-1287. |
|
[72] | Elmadfa, I. and Domke, I. 1978. Influence of date seed flour and cellulose on growth, food utilization and parameters of fat metabolism of growing and adult rats. Zeitschrift für Ernährungswissenschaft , 17(4):197-205. |
|
[73] | Ciolacu, D., Ciolacu, F. and Popa, V. I. 2011. Amorphous cellulose: Structure and characterization. Cellulose Chemistry and Technology, 45 (1-2): 13-21. |
|
[74] | Huang , J., Yuan, H. F., Song, C. F., Li, X. Y., Xie, J. C. and Du, J. Q. 2013. Determination of alpha-cellulose content of natural cellulose pulp in a new clean pulping process using near infrared diffuse reflectance spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi, 33 (1): 60-4. |
|
[75] | Varghese, J. N.. McKimm-Breschkin, J. L., Caldwell. J. B. Kortt. A. A.. and Colman. P. M. 1992. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins. 14.327-332. |
|
[76] | Sacui, J. A. et al. 2014. Comparison of the Properties of Cellulose Nanocrystals and Cellulose Nanofibrils Isolated from Bacteria, Tunicate, and Wood Processed Using Acid, Enzymatic, Mechanical, and Oxidative Methods. ACS Applied Materials & Interfaces, 6 (9): 6127-6138. |
|
[77] | Changsarn, S., Mendez, J. D., Shanmuganathan, K., Foster, E. J., Weder, C., & Supaphol, P. (2011). Biologically Inspired Hierarchical Design of Nanocomposites Based on Poly(ethylene oxide) and Cellulose Nanofibers. Macromolecular Rapid Communications, Vol.32, No.17, pp. 1367-1372. |
|
[78] | Huang, J., Liu, L., & Yao, J. M. (2011). Electrospinning of Bombyx mori Silk Fibroin Nanofiber Mats Reinforced by Cellulose Nanowhiskers. Fibers and Polymers, Vol.12, No.8, pp. 1002-1006. |
|
[79] | Dong, H., Strawhecker, K. E., Snyder, J. F., Orlicki, J. A., Reiner, R. S., & Rudie, A. W. (2012). Cellulose nanocrystals as a reinforcing material for electrospun poly(methylmethacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydrate Polymers, Vol.87, No.4, pp. 2488-2495. |
|
[80] | Park, W.-I., Kang, M., Kim, H.-S., & Jin, H.-J. (2007). Electrospinning of Poly(ethylene oxide) with Bacterial Cellulose Whiskers. Macromolecular Symposia, Vol.249-250, No.1, pp. 289-294. |
|
[81] | Peresin, M. S., Habibi, Y., Vesterinen, A.-H., Rojas, 0. J., Pawlak, J. J., and Sepp, J. V. 2010. Effect of moisture on electrospun nanofiber composites of poly-(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules, 11(9): 2471-2477. |
|
[82] | Zhou, C. J., Chu, R., Wu, R., & Wu, Q. L. (2011a). Electrospun Polyethylene Oxide/Cellulose Nanocrystal Composite Nanofibrous Mats with Homogeneous and Heterogeneous Microstructures. Biomacromolecules, Vol.12, No.7, pp. 2617-2625. |
|
[83] | Zhou, C. J., Wu, Q. L., Yue, Y. Y., & Zhang, Q. G. (2011b). Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. Journal of Colloid and Interface Science, Vol.353, No.1, pp. 116-123. |
|
[84] | Horio T, Yasuda M, Matsusaka S. 2014. Effect of particle shape on powder flowability of microcrystalline cellulose as determined using the vibration shear tube method. Int J Pharm. 2014 Oct 1; 473(1-2): 572-8. |
|
[85] | Gardner, D. J. 2002. Wood Structure and Properties. Arbora Publishers: 221 pp. |
|