Nanoscience and Nanotechnology Research
ISSN (Print): 2372-4668 ISSN (Online): 2372-4676 Website: Editor-in-chief: Mehrdad Hamidi, Javad Verdi
Open Access
Journal Browser
Nanoscience and Nanotechnology Research. 2017, 4(3), 73-85
DOI: 10.12691/nnr-4-3-1
Open AccessResearch Article

Differentiation and Synonyms Standardization of Amorphous and Crystalline Cellulosic Products

Sherif S. Z. Hindi1,

1Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdullaziz University, Saudi Arabia

Pub. Date: May 09, 2017
(This article belongs to the Special Issue Crystalline Cellulose: The Magic Industrial Material.)

Cite this paper:
Sherif S. Z. Hindi. Differentiation and Synonyms Standardization of Amorphous and Crystalline Cellulosic Products. Nanoscience and Nanotechnology Research. 2017; 4(3):73-85. doi: 10.12691/nnr-4-3-1


Different kinds of angstrometric- up to macrometric-scaled constructions can be synthesized from cellulose due to its hierarchical and multi-level organization. There are many commercial products can be obtained from cellulosic resources. Each cellulosic product may be known by several synonyms. Some of these synonyms may not define accurately such product. Accordingly, synonyms standardization is an urgent task to clear things up. We suggested dividing cellulosic products into seven scale categories based on their dimensional scale of their 3-D configurations, namely angstrometric, angstrometric/macrometric, nanometric, nanometric/macrometric, nanometric/micrometric, micrometric, and macrometric-scaled products. To distinctly differentiate the cellulosic products, they were classified based on their dimensions and aspect ratios and were distributed among the seven scale categories. Standardized synonyms of the commercial cellulosic products were suggested. In addition, an identification card (IC) of the cellulosic products was designed.

alpha cellulose microcrystalline cellulose nanocrystalline cellulose nanofibrillated cellulose

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Hindi, S. S. Z., and Abohassan, R. A. 2016. Cellulosic microfibril and its embedding matrix within plant cell wall. International Journal of Innovative Research in Science, Engineering and Technology, 5 (3): 2727-2734.
[2]  Popper, Z. A. 2008. Evolution and diversity of green plant cell walls. Current Opinion in Plant Biology, 11: 286-292.
[3]  Panshin, A. J. and de Zeeuw, C. 1980. Textbook of Wood Technology: Structure, identification, properties, and uses of the commercial woods of the United States and Canada. 4th ed. McGraw-Hill Series in Forest Resources. New York, McGraw-Hill Book Co.
[4]  Huber, T., Mussig, J., Curnow, O., Pang, O., Bickerton, S., and Staiger, M. P. 2012. A critical review of all-cellulose composites. J Mater Sci., 47: 1171-1186.
[5]  Solomon, E., Berg, L., and Martin, D. W. 2004. Biology. Cengage Learning, 7th ed.: 1024 pp.
[6]  Sjostrom, E. 1981. Wood Chemistry: Fundamentals and applications, Academic Press, New York, 169-189.
[7]  Hindi, S. S. Z. 2016. The interconvertiblity of cellulose’s allomorphs. International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET). 6 (1): 715-722.
[8]  Daniel, J.R. 1985. Cellulose structure and properties. In Encyclopedia of Polymer Science and Engineering; Kroschwitz, J.I., Ed., Wiley-Interscience Publication John Wiley & Sons: New York, NY, USA. 3: 86-123.
[9]  Sugiyama, J., Okano, T., Yamamoto, H. and Horii, F. 1990. Transformation of valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules, 23: 3196-3198.
[10]  Sugiyama, J.; Persson, J.; Chanzi, H. 1991. Combined infrared and electron diffraction study of polymorphism of native cellulose. Macromolecules. 24: 2461-2466.
[11]  Dinand, E., Vignon, M., Chanzy, H. and Heux, L. 2002. Mercerization of primary wall cellulose and its implication for the conversion of cellulose I to cellulose II. Cellulose. 9: 7-18.
[12]  Saxena, I. M. and Brown, R. M. J. 2005. Cellulose Biosynthesis: Current views and envolving Concepts. Ann. Bot. 96: 9-21.
[13]  Tappi, T 203cm-99. 2009. Alpha-, beta- and gamma-cellulose in pulp. Atlanta, GA, USA.
[14]  Hallac, B. B. and Ragauskas, A. J. 2011, Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioprod. Bioref., 5: 215-225.
[15]  Keegstra, K. 2010. Plant Cell Walls. Plant Physiology, 154 (2): 483-486.
[16]  Kamel, S. 2007. Nanotechnology and its application in lignocellulosics composites, a mini review. Express Polymer Letters, 1: 546-575.
[17]  Wang, S, Cheng, Q, Rials, T. G. and Lee, S. H. 2008. Cellulose microfibril/nanofibril and its nanocompsites. Paper presented at the 8th Pacific Rim Bio-Based Composites Symposium during 20-23 November at Kuala Lampur, Malaysia.
[18]  Miller, J. 2015. Nanocellulose state of the industry.
[19]  Habibi, Y., Lucia, L. A. and Rojas, O. J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110: 3479-3500.
[20]  Ankerfors, M. 2013. Possible applications for nanocellulose in packing. Billerud%20-%20for%20delegates.pdf.
[21]  Kalashnikova, I., Bizot, H., Bertoncini, P., Cathala, B. and Capron, I. 2013. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter, 9: 952-959.
[22]  de Souza Lima, M. M. and Borsali, R. 2004. Rodlike cellulose microcrystals: Structure, properties and applications. Macromol. Rapid Commun. 25: 771-787.
[23]  Ciolacu, D. and Popa, V. I. 2005. Structural changes of cellulose determined by dissolution in aqueous alkali solution. Cellulose Chemistry and Technology, 39 (3-4): 179-188.
[24]  Ciolacu, D., Popa, V. I. and Ritter, H. 2006. Cellulose derivatives with adamantoyl groups. Journal of Applied Polymer Science, 100 (1): 105-112.
[25]  Zugenmaier, P. 2008. In Crystalline cellulose and derivatives: Characterization and structures. Springer Series in Wood Science, Springer-Verlag, Berlin: 175-206.
[26]  Khazraji, A. C. and Robert, S. 2013. Amorphous regions: A novel approach using molecular modeling. Journal of Nanomaterials. 2013: 10 pp.
[27]  Siqueira, G., Bras, J., and Dufresne, A. 2010. Luffa cylindrica as a lignocellulosic resource of fiber, microfibrillated cellulose, and cellulose nanocrystals. BioResources, 5 (2): 727-740.
[28]  Frone, A. N., Panaitrscu, D. M., Donescu, D. 2011. Some aspects concerning the isolation of cellulose micro- and nano- fibers. Universitatea Politehnica din Bucuresti (U.P.B.): The Scientific Bulletin journal, Series B, 73: 133-152.
[29]  Dufresne, A. 2008. Cellulose-based composites and nanocomposites. In Monomers, Polymers and Composites from Renewable Resources, 1st ed.; Gandini, A., Belgacem, M. N., Eds.; Elsevier: Oxford, UK: pp. 401-418.
[30]  Lu, Y. S., Weng, L. H., and Cao, X. D. 2005. Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromolecular Bioscience, 5: 1101-1107.
[31]  Zhang, Y., Nypelo, T., Salas, C., Arboleda, J., Hoeger, I. C., Orlando J., and Rojas, O. J. 2013. Cellulose nanofibrils: From strong materials to bioactive surfaces. Journal of Renewable Materials, 1 (3): 195-211.
[32]  Aullin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Osterberg, M., and Wagberg, L. 2009. Nanoscale cellulose films with different crystallinities and mesostnictures: Their surface properties and interaction with water. Langmuir, 25(13): 7675-7685.
[33]  Yuwawech, K., Wootthikanokkhan, J., and Tanpichai, S. 2015. Effects of two different cellulose nanofiber types on properties of poly(vinyl alcohol) composite films. Journal of Nanomaterials. Vol. 2015. 10 pp.
[34]  Chakraborty, A., Sain, M. and Kortschot, M., 2006. Reinforcing potential of wood pulp derived microfibres in a PVA matrix. Holzforschung, 60 (1): 53-58.
[35]  Peng, B. L,, Dhar, N., Liu, H. L., Tam, K. C. 2011. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. The Canadian Journal of Chemical Engineering. 89 (5): 1191-1206.
[36]  Moon, R. J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 40: 3941-3994.
[37]  Hindi, S. S. Z. 2017. Suitability of date palm leaflets for sulphated cellulose nanocrystals synthesis. Nanoscience and Nanotechnology Research, 4 (1): 7-16.
[38]  Lagerwall, J. P. F., Schütz, C., Salajkova, M., Noh, J. H., Park, J. H., Scalia, G. and Bergström, L. 2014. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. Nature Publishing Group, Asia Materials: 6, e80.
[39]  Samir, M. A. S. A.; Alloin, F.; Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6: 612-626.
[40]  Beck-Candanedo, S.; Roman, M.; Gray, D. 2005. Effect of conditions on the properties behavior of wood cellulose nanocrystals suspensions. Biomacromolecules. 6: 1048-1054.
[41]  Oun, A. A. and Rhim, J.-W. 2016. Characterization of nanocelluloses isolated from ushar (Calotropis procera) seed fiber: Effect of isolation method. Materials Letters, 168: 146-150.
[42]  Siro, I. & Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17: 459-494.
[43]  Lee, K.-Y., Aitomaki, Y., Berglund, L. A., Oksman, K. and Bismarck, A. 2014. On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 105: 15-27.
[44]  Pan, M., Zhou, X. and Chen, M. 2013. Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioResources, 8 (1): 933-943.
[45]  Yano, H., Sugiyama, J., Nakagaito, A.N., Nogi, M., Matsuura, T., Hikita, M. and Handa, K., 2005. Optically transparent composites reinforced with networks of bacterial nanofibers. Advanced Materials, 17 (2): 153-155.
[46]  Zimmermann, T., Pohler, E. and Geiger, T. 2004. Cellulose fibrils for polymer reinforcement. Advanced Engineering Materials, 6 (9): 754-761.
[47]  Nakagaito, A.N. and Yano, H. 2005. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Applied Physics A, 80: p. 155-159.
[48]  Berglund, L., 2005. Cellulose-based nanocomposites. In: A. K. M. Mohanty, M.; Drzal, L. (Editor), Natural fibers, biopolymers, and biocomposites. Taylor & Francis: 807-832.
[49]  Plomion, C., Leprovost, G., Stokes, A. 2001. Wood formation in trees. Plant Physiolog. 127: 1513-1523.
[50]  Barnett, J.R., Bonham, V.A. 2004. Cellulose microfibril angle in the cell wall of wood fibres. Biological reviews of the Cambridge Philosophical Society, 79: 461-472.
[51]  Wang J., Howles, P. A., Cork, A. H., Birch, R. J., and Williamson, R. E. 2006. Chimeric proteins suggest that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific sites in the cellulose synthase of primary walls. Plant Physiol, 142: 685-695.
[52]  Monschein, M., Reisinger, C., and Nidetzky, B. 2013. Enzymatic hydrolysis of microcrystalline cellulose and pretreated wheat straw: A detailed comparison using convenient kinetic analysis. Bioresource Technology. 128: 679-687.
[53]  El-Sakhawy M., and Hassan, M. L. 2007. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate Polymers, 67: 1-10.
[54]  Chauhan, Y. P., Sapkal, R. S., Sapkal, V. S., and Zamre, G. S. 2009. Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries). International Journal of Chemical Sciences. 7 (2): 681-688.
[55]  Hindi, S. S. Z. 2017. Microcrystalline cellulose: The inexhaustible treasure for pharmaceutical industry. Nanoscience and Nanotechnology Research, 4 (1): 22-31.
[56]  Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg,M., Ruokolainen,J., Laine, J., Larsson, T. P., Ikkala, O., and Lindstorm, T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8 (6): 1934-1941.
[57]  Anonymous. What is cellulose filament?.
[58]  Anonymous, 2013. Cellulose Filaments: An exciting opportunity for Canada’s forest sector.
[59]  Lundahl, M. J., Cunha, A. G., Rojo, E., Papageorgiou, A. C., Rautkari, L., Arboleda, J. C. and Rojas, O. J. 2016. Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Scientific Reports, 6: 30695.
[60]  Bajpai, P. 2012. Biotechnology for Pulp and Paper Processing. springer: 414 pp.
[61]  Ding, S.-Y., Zhao, S. and Zeng, Y. 2014. Size, shape, and arrangement of native cellulose fibrils in maize cell walls. Cellulose, 21, 863-871.
[62]  Henriksson, M., Henriksson, G., Berglund, L. A. and Lindström, T. 2007. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43 (8): 3434-3441.
[63]  Hubbe, M.A., Rojas, O.J., Lucia, A.L., Sain, M. 2008. Cellulosic nanocomposites: a review. Bioresources 3:929-980.
[64]  Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. and Dorris, A. 2011. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed., 50: 5438-5466.
[65]  Aziz, F. A., Ismail, A., Wan Yunus, W. M. Z. et al. 2016. The Treated Cellulose Micro/Nano Fibers (CMNF) from Bioresources in Malaysia. Materials Science Forum, 846: 434-439.
[66]  Azraaie, N., Zainul Abidin, N. A. M., Aziz, F. A., et al. Cellulose Microfibrils/Nanofibrils (CMNF) Produced from Banana (Musa acuminata) Pseudo-Stem Wastes: Isolation and Characterization. Materials Science Forum, 846: 448-453.
[67]  Herrick, F.W.C., R. L.; Hamilton, J. K.; Sandberg, K. R., 1983. Microfibrillated cellulose: morphology and accessibility. Journal of Applied Polymer Science: Applied Polymer Symposium, 37: 797-813.
[68]  Spence, K. L., Venditti, R. A., Rojas, O. J., Habibi, Y., and Pawlak, J. J. 2010. The effect of chemical composition on microfibrilluar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose: 17: 835-848.
[69]  Thoorens, G., Krier, F., Leclercq, B., Carlin, B. and Evrard, B. 2014. Microcrystalline cellulose, a direct compression binder in a quality by design environment: A review. International Journal of Pharmaceutics, 473 (1-2): 64-72.
[70]  Chinga-Carrasco, G. 2011. Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Research Letters, 6 (1): 417.
[71]  Palme, A., Theliander, H. and Brelid, H. 2016. kraft pulp, dissolving pulps and cotton textile cellulose. Carbohydrate Polymers, 136: 1281-1287.
[72]  Elmadfa, I. and Domke, I. 1978. Influence of date seed flour and cellulose on growth, food utilization and parameters of fat metabolism of growing and adult rats. Zeitschrift für Ernährungswissenschaft , 17(4):197-205.
[73]  Ciolacu, D., Ciolacu, F. and Popa, V. I. 2011. Amorphous cellulose: Structure and characterization. Cellulose Chemistry and Technology, 45 (1-2): 13-21.
[74]  Huang , J., Yuan, H. F., Song, C. F., Li, X. Y., Xie, J. C. and Du, J. Q. 2013. Determination of alpha-cellulose content of natural cellulose pulp in a new clean pulping process using near infrared diffuse reflectance spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi, 33 (1): 60-4.
[75]  Varghese, J. N.. McKimm-Breschkin, J. L., Caldwell. J. B. Kortt. A. A.. and Colman. P. M. 1992. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins. 14.327-332.
[76]  Sacui, J. A. et al. 2014. Comparison of the Properties of Cellulose Nanocrystals and Cellulose Nanofibrils Isolated from Bacteria, Tunicate, and Wood Processed Using Acid, Enzymatic, Mechanical, and Oxidative Methods. ACS Applied Materials & Interfaces, 6 (9): 6127-6138.
[77]  Changsarn, S., Mendez, J. D., Shanmuganathan, K., Foster, E. J., Weder, C., & Supaphol, P. (2011). Biologically Inspired Hierarchical Design of Nanocomposites Based on Poly(ethylene oxide) and Cellulose Nanofibers. Macromolecular Rapid Communications, Vol.32, No.17, pp. 1367-1372.
[78]  Huang, J., Liu, L., & Yao, J. M. (2011). Electrospinning of Bombyx mori Silk Fibroin Nanofiber Mats Reinforced by Cellulose Nanowhiskers. Fibers and Polymers, Vol.12, No.8, pp. 1002-1006.
[79]  Dong, H., Strawhecker, K. E., Snyder, J. F., Orlicki, J. A., Reiner, R. S., & Rudie, A. W. (2012). Cellulose nanocrystals as a reinforcing material for electrospun poly(methylmethacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydrate Polymers, Vol.87, No.4, pp. 2488-2495.
[80]  Park, W.-I., Kang, M., Kim, H.-S., & Jin, H.-J. (2007). Electrospinning of Poly(ethylene oxide) with Bacterial Cellulose Whiskers. Macromolecular Symposia, Vol.249-250, No.1, pp. 289-294.
[81]  Peresin, M. S., Habibi, Y., Vesterinen, A.-H., Rojas, 0. J., Pawlak, J. J., and Sepp, J. V. 2010. Effect of moisture on electrospun nanofiber composites of poly-(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules, 11(9): 2471-2477.
[82]  Zhou, C. J., Chu, R., Wu, R., & Wu, Q. L. (2011a). Electrospun Polyethylene Oxide/Cellulose Nanocrystal Composite Nanofibrous Mats with Homogeneous and Heterogeneous Microstructures. Biomacromolecules, Vol.12, No.7, pp. 2617-2625.
[83]  Zhou, C. J., Wu, Q. L., Yue, Y. Y., & Zhang, Q. G. (2011b). Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. Journal of Colloid and Interface Science, Vol.353, No.1, pp. 116-123.
[84]  Horio T, Yasuda M, Matsusaka S. 2014. Effect of particle shape on powder flowability of microcrystalline cellulose as determined using the vibration shear tube method. Int J Pharm. 2014 Oct 1; 473(1-2): 572-8.
[85]  Gardner, D. J. 2002. Wood Structure and Properties. Arbora Publishers: 221 pp.