Nanoscience and Nanotechnology Research
ISSN (Print): 2372-4668 ISSN (Online): 2372-4676 Website: Editor-in-chief: Mehrdad Hamidi, Javad Verdi
Open Access
Journal Browser
Nanoscience and Nanotechnology Research. 2017, 4(2), 49-58
DOI: 10.12691/nnr-4-2-3
Open AccessArticle

Effect of Potassium Dichromate on Properties and Biodegradation of Gum Arabic Based Bioplastic Membranes

Sherif S. Z. Hindi1, , Mona O. Albureikan2, Attieh A. Al-Ghamdi3, Haya Alhummiany4 and Sana M. Al-Sharabi2

1Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah-21589, Saudi Arabia

2Department of Microbiology, Faculty of Science, King Abdulaziz University

3Department of Physics, University of Jeddah, Saudi Arabia

4Department of Physics, Faculty of Science, Al-Faisaliah Campus, King Abdulaziz University

Pub. Date: April 07, 2017

Cite this paper:
Sherif S. Z. Hindi, Mona O. Albureikan, Attieh A. Al-Ghamdi, Haya Alhummiany and Sana M. Al-Sharabi. Effect of Potassium Dichromate on Properties and Biodegradation of Gum Arabic Based Bioplastic Membranes. Nanoscience and Nanotechnology Research. 2017; 4(2):49-58. doi: 10.12691/nnr-4-2-3


Gum Arabic (GA) collected from Acacia senegal trees was used with polyvinyl alcohol (PVA) to prepare of a series of biodegradable membranes doped and non-doped with potassium dichromate (K2Cr2O7). Adding the K2Cr2O7 to the GA/PVA blends slightly decreased their crystallinity index (CI) by about 2 %. Increasing the PVA concentration in the chromated GA/PVA blends was responsible for increasing the CI. Adding the K2Cr2O7 to the pure GA solution modified its differential thermal behavior whereby the exothermic reactions occurred between 321°C and 433°C were disappeared. The K2Cr2O7 increased the heat change drastically for all the bioplastic blends with the highest increase for the pure GA. Adding K2Cr2O7 to the pure PVA increased the nanometric particle size (NPS) significantly. Increasing the PVA concentration in a blend had a greater effect than did the K2Cr2O7 on the NPS. The buried bioplastic membranes in the control soil had different count and species of microbial communities. The numbers of bacteria and fungi in the initial soil sample were lower than those for chromated GA membranes and were greater than those for the chromated PVA. All bacterial and fungi species had growth ability and are expected to be detoxification tools of chromium ion-doped blends of GA and PVA leading to a green environment.

arabic gum polyvenyl alcohol potassium dichromate bio-degradation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Khan, J. A., Khan, M. A., Islam, R., and Abdul Gafur. 2010. Mechanical, thermal and interfacial properties of jute fabric-reinforced polypropylene composites: Effect of potassium dichromate. Materials Sciences and Applications, 1 (6): 350-357.
[2]  Wang, B.-Q., Zhang, P.-H., and Fang, M.-H. 2014. Potassium dichromate surface modification of poly-lactic acid (PLA) and poly-lactide-co-glycolide (PGLA) fibers. Advanced Materials Research, 936: 801.
[3]  Crompton, T. R. 2012. Practical polymer analysis. Springer, US, 822 pp.
[4]  James, C. 2008. The book of alternative photographic processes. Cengage Learning, USA. 2ed, 660 pp.
[5]  Chen, J., Zhang, Y., Du, G. C., Hua, Z. Z., and Zhu, Y. 2007. Biodegradation of polyvinyl alcohol by a mixed microbial culture. Enzyme Microb. Technol, 40 (7): 1686-1691.‏
[6]  Abd Alla, F. A. A. 2012. The Effects of Microbiological Biodegradation on Gum Arabic Structure and Molecular Mass, PhD Thesis, Sudan University of Science and Technology):‏ 147 pp.
[7]  Azzaoui, K., Hammouti, B., Lamhamdi, A., Mejdoubi, E., and Berrabah, M. 2014. The Gum Arabic in the southern region of Morocco. Moroccan Journal of Chemistry, 3(1): 99-107.
[8]  Razzak, M. T., and Darwis, D. 2001. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat. Phys. Chem., 62(1): 107-113.‏
[9]  Nair, N. R., Nampoothiri, K. M., and Pandey, A. 2012. Preparation of poly (L-lactide) blends and biodegradation by Lentzea waywayandensis. Biotechnol. Lett, 34 (11): 2031-2035.‏
[10]  Onyari, J. M., Mulaa, F., Muia, J., and Shiundu, P. 2008. Biodegradability of poly (lactic acid), preparation and characterization of PLA/gum Arabic blends. Journal of Polymers and the Environment, 16 (3): 205-212.‏
[11]  Tiwari, A., Terada, D., and Kobayash, H. 2011. Polyvinyl Modified Guar-gum Bioplastics for Packaging Applications. Handbook of Bioplastics and Biocomposites Engineering Applications, 24: 177.‏
[12]  Padil, V. V. T., Nguyen, N. H., Ševců, A., and Černík, M. 2015. Fabrication, characterization, and antibacterial properties of electrospun membrane composed of gum karaya, polyvinyl alcohol, and silver nanoparticles. Journal of Nanomaterials, 271: 32-38.‏
[13]  Falath, W., Sabir, A., Jacob, K. I. 2017. Novel reverse osmosis membranes composed of modified PVA/Gum Arabic conjugates: Biofouling mitigation and chlorine resistance enhancement. Carbohydr Polym., 155: 28-39.
[14]  Mollasalehi, S. 2013. Fungal biodegradation of polyvinyl alcohol in soil and compost environments.PhD thesis. University of Manchester. 156 pp.
[15]  Wang, X. F., Xing, M.L., Shen, Y., Zhu, X., and Xu, L.H. 2006. Oral administration of Cr(VI) induced oxidative stress, DNA damage and apoptotic cell death in mice. Toxicology, 228: 16-23.
[16]  Kim, E. and K.J. Na, 1991. Nephrotoxicity of sodium dichromate depending on the route of administration. Arch. Toxicol., 65: 537-541.
[17]  Poornima, K., Karthik, L., Swadhini, S. P., Mythili, S., and Sathiavelu, A. 2010. Degradation of chromium by using a novel strains of Pseudomonas species. J Microbial Biochem Technol., 2: 95-99.
[18]  Tchounwou, P. B et al. 2017. Heavy metals toxicity and the environment. EXS 101 (2012): 133-164. PMC.
[19]  Anonymous. WHO/FAO/IAEA. World Health Organization. Switzerland: Geneva. 1996. Trace Elements in Human Nutrition and Health.
[20]  Squadrone, S., Burioli, E., Monaco, G., Koya, M. K., Prearo, M., Gennero, S., and Abete, M. C. 2016. Human exposure to metals due to consumption of fish from an artificial lake basin close to an active mining area in Katanga (DR Congo). Science of The Total Environment, 568: 679-684.‏
[21]  Assasa, M. F., and Farahat, M. M. I. 2014. Toxic Effect of Potassium Dichromate on Sex Hormones and Possible Protective Effect of Rice Bran Oil in Female Albino Rats. Journal of Pharmacology and Toxicology, 9: 90-96.
[22]  Shi, X., Chiu, A., Chen, C. T., Halliwell, B., Castranova, V., and Vallyathan, V. 1999. Reduction of chromium (VI) and its relationship to carcinogenesis. J. Toxicol. Environ. Health Part B: Crit. Rev., 2: 87-104.
[23]  Banu, S. K., J. B. Samuel, J. A. Arosh, R. C. Burghardt and M.M. Aruldhas, 2008. Lactational exposure to hexavalent chromium delays puberty by impairing ovarian development, steroidogenesis and pituitary hormone synthesis in developing Wistar rats. Toxicol. Applied Pharmacol., 232: 180-189.
[24]  Francis, A. J., Spanggord, R. J., Ouchi, G. I., Bramhall, R., and Bohonos, N. 1976. Metabolism of DDT Analogues by a Pseudomonas sp. Appl Environ Microbiol., 32: 213-216.
[25]  Algamdi, A. Y., Alharbi, S. A., Wainwright, M., and Al-Solaimani, S. G. 2016a. Isolation and Identification of Nine Dichromate Cr+6 resistance Bacteria by Modern Techniques. Journal of Scientific and Engineering Research, 3(4): 383-391.
[26]  Thakur, I. S., & Srivastava, S. 2011. Biodegradation and bioconversion of chromium and pentachlorophenol in tannery effluent by microorganisms. Int J Technol, 3: 224-233.‏
[27]  Chakraborty, R., Woo, H., Dehal, P., Walker, R., Zemla, M., Auer, M., and Hazen, T. C. 2017. Complete genome sequence of Pseudomonas stutzeri strain RCH2 isolated from a Hexavalent Chromium [Cr (VI)] contaminated site. Standards in Genomic Sciences, 12 (1): 23.‏
[28]  Masood, F., and Malik, A. 2011. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Bulletin of environmental contamination and toxicology, 86 (1): 114-119.‏
[29]  Ackerley, D. F., Gonzalez, C. F., Keyhan, M., Blake, R., & Matin, A. 2004. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environmental Microbiology, 6 (8): 851-860.‏
[30]  McLean, J., & Beveridge, T. J. 2001. Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Applied and Environmental Microbiology, 67 (3): 1076-1084.‏
[31]  Kafilzadeh, F., and Saberifard, S. 2016. Isolation and identification of chromium (VI)-Resistant bacteria from Soltan Abad river sediments (Shiraz-Iran). Jundishapur Journal of Health Sciences, 8 (1):‏ e33576.
[32]  Ilias, M., Rafiqullah, I. M., Debnath, B. C., Mannan, K. S. B., & Hoq, M. M. 2011. Isolation and characterization of chromium (VI)-reducing bacteria from tannery effluents. Indian journal of microbiology, 51 (1): 76-81.‏
[33]  Jadhav, I., Vasniwal, R., Shrivastava, D., & Jadhav, K. 2016. Microorganism-Based Treatment of Azo Dyes. Journal of Environmental Science and Technology, 9(2), 188.‏
[34]  Varotkar, P., Tumane, P. M., & Wasnik, D. D. 2016. Bioconversion of Waste Paper into Bio-Ethanol by Co-Culture of Fungi Isolated from Lignocellulosic Waste. Int. J. Pure App. Biosci., 4 (4): 264-274.‏
[35]  Hindi, S. S. Z., Albureikan, M. O., Al-ghamdy, A. A, Alhummiany, H. and Ansari, M. S. 2017. Synthesis and characterization of Arabic gum based bio-plastic membranes. Nanoscience and Nanotechnology Research, 4 (1): 16-32.
[36]  Hindi, S. S. Z. 2017a. Some Crystallographic Properties of Cellulose I ‎as Affected by Cellulosic Resource, Smoothing, ‎and Computation Methods. International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET), 6 (1): 732-752.
[37]  Fortunati, E., Puglia, D., Monti, M., Peponi, L., Santulli, C., Kenny, J. M. and Torre, L. 2013. Extraction of Cellulose Nanocrystals from Phormium tenax Fibres. Journal of Polymers and the Environment. 21(2): 319-328.
[38]  Mergaert, J. Anderson, C. Wouters, A. Swings, J. and Kersters, K. F. E. M. S. 1992. Biodegradation of polyhydroxyalkanoates. FEMS Microbiology Letters, 103 (2-4): 317-321.
[39]  Mostafa, H. M., Sourell, H., and Bockisch, F. J. 2010. Mechanical properties of some bioplastics under different soil types used as biodegradable drip tubes. Agricultural Engineering International: CIGR Journal, 12 (1): 12-21.
[40]  Volova, T. G., Boyandin, A. N., Vasil’ev, A. D., Karpov, V. A., Kozhevnikov, I. V., Prudnikova, S. V., and Gitel’Zon, I. I. 2011. Biodegradation of polyhydroxyalkanoates (PHAs) in the South China Sea and identification of PHA-degrading bacteria. Microbiology, 80 (2): 252.
[41]  El-Nakhlawy, F.S. 2008. Principles of statistics, biostatistical experimental design and analysis”. KAU Pub. Center. KSA.
[42]  Bajpai, A. K., Shukla, S. K., Bhanu, S., and Kankane, S. 2008. Responsive polymers in controlled drug delivery. Progress in Polymer Science, 33 (11): 1088-1118.
[43]  Rathna, G. V. N., Jog, J. P., and Gaikwad, A. B. 2011. Development of non-woven nanofibers of egg albumen-poly (vinyl alcohol) blends: influence of solution properties on morphology of nanofibers. Polym. J., 43 (7): 654-661.‏
[44]  Hindi, S. S. Z. 2017b. Suitability of date palm leaflets for sulphated cellulose nanocrystals synthesis. Nanoscience and Nanotechnology Research, 4(1): 7-16.
[45]  Algamdi, A. Y., Alharbi, S. A., Wainwright, M., and Al-Solaimani, S. G. 2016b. Detoxification of potassium dichromate (Cr6+) by nine isolated bacteria species as affected by incubation periods. International Journal of Scientific & Engineering Research, 7 (8).
[46]  Rong, D., Usui, K., Morohoshi, T., Kato, N. O. R. I. H. I. R. O., Zhou, M., and Ikeda, T. S. U. K. A. S. A. 2009. Symbiotic degradation of polyvinyl alcohol by Novosphingobium sp. and Xanthobacter flavus. Journal of Environ. Biotechnol., 9 (2): 131-134.‏
[47]  Mori, T., Sakimoto, M., Kagi, T., and Sakai, T. 1996. Isolation and characterization of a strain of Bacillus megaterium that degrades poly (vinyl alcohol). Biosci., Biotechnol., Biochem., 60 (2): 330-332.‏
[48]  Patil, R., and Bagde, U. S. 2015. Enrichment and isolation of microbial strains degrading bioplastic polyvinyl alcohol and time course study of their degradation potential. African Journal of Biotechnology, 14 (27): 2216-2226.‏
[49]  Sukumar, C., Janaki, V., Vijayaraghavan, K., Kamala-Kannan, S., & Shanthi, K. 2017. Removal of Cr (VI) using co-immobilized activated carbon and Bacillus subtilis: fixed-bed column study. Clean Technologies and Environmental Policy, 19 (1): 251-258.‏
[50]  Ismail, Z. Z., and Khudhair, H. A. 2016. Aerobic biodegradation of phenol by Immobilized Pseudomonas sp. cells in two different bio-carrier matrices.‏ Journal of Engineering, 22 (4): 68-78.
[51]  Jecu, L., Grosu, E., Raut, I., Ghiurea, M., Constantin, M., Stoica, A., and Vasilescu, G. 2012. Fungal degradation of polymeric materials: morphological aspects.‏
[52]  Coleman, R. N., Paran. J. H. 1983. Accumulation of hexavalent chromium by selected bacteria.Environ. Technol. Lett. 4: 149-156.
[53]  Cadmus, M. C., Jackson, L. K., Burton, K. A., Plattner, R. D., and Slodki, M. E. 1982. Biodegradation of xanthan gum by Bacillus sp. Appl. Environ. Microbiol., 44 (1): 5-11.‏ 81.
[54]  Patil, R., & Bagde, U. S. 2012. Isolation of polyvinyl chloride degrading bacterial strains from environmental samples using enrichment culture technique. African Journal of Biotechnology, 11 (31): 7947-7956.‏
[55]  Leja, K., & Lewandowicz, G. 2010. Polymer biodegradation and biodegradable polymers—a review. Polish Journal of Environmental Studies, 19 (2): 255-266.‏