Nanoscience and Nanotechnology Research
ISSN (Print): 2372-4668 ISSN (Online): 2372-4676 Website: https://www.sciepub.com/journal/nnr Editor-in-chief: Mehrdad Hamidi, Javad Verdi
Open Access
Journal Browser
Go
Nanoscience and Nanotechnology Research. 2017, 4(1), 1-6
DOI: 10.12691/nnr-4-1-1
Open AccessArticle

Control of the Surface Plasmon Resonance of Two Configurations of Nanoparticles: Simple Gold Nanorod and Gold/Silica Core/Shell

A Sambou1, P. D. Tall1, Kh Talla1, O. Sakho B D Ngom1, and A C Beye1

1Laboratoire de Photonique et de Nano-Fabrication, Faculté des sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 25114 Dakar-Fann Dakar, Senegal

Pub. Date: January 14, 2017

Cite this paper:
A Sambou, P. D. Tall, Kh Talla, O. Sakho B D Ngom and A C Beye. Control of the Surface Plasmon Resonance of Two Configurations of Nanoparticles: Simple Gold Nanorod and Gold/Silica Core/Shell. Nanoscience and Nanotechnology Research. 2017; 4(1):1-6. doi: 10.12691/nnr-4-1-1

Abstract

We report on the study of optical properties of ellipsoidal nanoparticles forms using Gans’s theory and Drude model; we introduce important parameters such as surrounding medium, shell thickness. Nanorods shaped nanoparticles are distinguished of others forms by the appearance of two peaks corresponding to their plasmonic bands: transverse mode placed in the visible region and the longitudinal mode located toward longer wavelength. The simulation results show a strong dependence of core/shell ratio and surrounding medium on longitudinal resonance. Nano shell nanoparticles composed with a big core (gold) aspect ratio are more shifted with increasing of silica layer.

Keywords:
nanorods particles core/shell particles surface plasmon resonance

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  H. H. Chen, H. Suzuki, O. Sato, Z. Z. Gu, Applied Physics A - Materials Science & Processing, Appl. Phys. A (2005). 1127-1130.
 
[2]  A. Moores and F. Goettmann, New J. Chem., 30 (2006). 1121-1132.
 
[3]  C. Noguez, J. Phys. Chem. C, 111 (2007). 3806-3819.
 
[4]  N. Nath and A. Chilkoti, Applied Chemistry, 76 (2004). 5370-5378.
 
[5]  P. Tuersun, Optik 127 (2016). 3466-3470.
 
[6]  C. Noguez J. Phys. Chem. C 111 (2007). 3806-3819.
 
[7]  A. sambou, B. D. Ngom, L. Gomis, A. C. Beye, 4 (2016). 63-69.
 
[8]  Z. Kaminskiene, I. Prosycevas, J. Stronkute and A. Guobiene, Acta physica polonica A 123 (2013). 111-114.
 
[9]  X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, J. Amer. Chem. Soc. 128 (2006). 2115.
 
[10]  L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas and J. L. West, Proceedings of the National Academy of Sciences USA, 100 (2003). 13549-13554.
 
[11]  J. Cao, T. Sun, K. T. V. Grattan, B: Chemical, 195 (2014). 332-351.
 
[12]  M. T. Delapierre, J. Mohamed, S. Mornet, E. Duguet, S. Ravaine, Gold Bulletin (2008). 195-207.
 
[13]  S. Link, M. B. Mohamed and M. A. El-Sayed, J. Phys. Chem. B 103 (1999). 3073-3077.
 
[14]  X. Huang, S. Neretina, M. A. El-Sayed, Advanced Materials 21 (2009). 4880-4910.
 
[15]  S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst and R. N. Muller, Chem. Rev. 108 (2008). 2064.
 
[16]  Knopp, D. Tang, R. Niessner, Chim. Acta Anal. 647 (2009). 14.
 
[17]  M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez and Y. Xia, Chem. Soc. Rev, 35 (2006). 1084-1094.
 
[18]  M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez and Y. Xia, Chem. Soc. Rev, 35 (2006). 1084-1094.
 
[19]  M. Liu and P. G. Sionnest, Journal of Materials Chemistry 16 (2006). 3942-3945.
 
[20]  S. J. Limmer, T. P. Chou and G. Cao, J. Phys. Chem. B 107 (2003). 13313-13318.
 
[21]  H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, M. H. Huang, Chem. Mater, 17 (2005). 6447.
 
[22]  B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin and N. Khlebtsov, Nanotechnology 17 (2006). 5167-5179.
 
[23]  N.G. Khlebtsov, Quantum Electronic 38 (2008). 504-529.
 
[24]  C. Gautier, A. Cunningham, L. Si-Ahmed, G. Robert and T. Bürgi, Gold Bulletin 43 (2010). 94-104.
 
[25]  R. G. Chaudhuri and S. Paria, CHEMICAL REVIEWS 112 (2012). 2373-2433.
 
[26]  H. Zhang, DR Dunphy, X. Jiang, H. Meng, B. Sun, D. Tarn, M. Xue, X. Wang, S. Ling, Z. Ji, R. Li, FL. Garcia, J. Yang, ML. kirk, T. Xia, JL. Zink, A. Nel, CJ. Brinker, J AM Chem Soc. 134 (2012). 15790-15804.
 
[27]  E. Palik, Handbook of Optical Constants of Solids Vol I, Academic Press, Orlando, pp. 759.
 
[28]  Q. Zhan, J. Qian, X. Li and S. He, Nanotechnology 21 (2010). 1-12.