Nanoscience and Nanotechnology Research
ISSN (Print): 2372-4668 ISSN (Online): 2372-4676 Website: https://www.sciepub.com/journal/nnr Editor-in-chief: Mehrdad Hamidi, Javad Verdi
Open Access
Journal Browser
Go
Nanoscience and Nanotechnology Research. 2015, 3(1), 16-22
DOI: 10.12691/nnr-3-1-3
Open AccessArticle

Surfactant Assisted Synthesis of Cuprous Oxide (Cu2O) Nanoparticles via Solvothermal Process

M. A. Khan1, 2, , Mahboob Ullah1, Tariq Iqbal1, Hasan Mahmood3, 4, Ayaz A. Khan1, Muhammad Shafique1, A. Majid1, Azhar Ahmed1 and Nawazish A. Khan5

1Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan

2High Tech Centralized Instrumentation Laboratory, UAJK, Muzaffarabad 13100, Pakistan

3Department of Physics, State University of New York at Albany, Albany, NY 12222, USA

4Department of Physics, COMSATS Institute of Information Technology, Defence Road Lahore

5Department of Physics, Quaid-i-Azam University Islamabad, 45320, Pakistan

Pub. Date: October 21, 2015

Cite this paper:
M. A. Khan, Mahboob Ullah, Tariq Iqbal, Hasan Mahmood, Ayaz A. Khan, Muhammad Shafique, A. Majid, Azhar Ahmed and Nawazish A. Khan. Surfactant Assisted Synthesis of Cuprous Oxide (Cu2O) Nanoparticles via Solvothermal Process. Nanoscience and Nanotechnology Research. 2015; 3(1):16-22. doi: 10.12691/nnr-3-1-3

Abstract

Cuprous oxide (Cu2O) nanoparticles have been synthesized by facile solvothermal scheme. The reduction of copper sulphate pentahydrate (CuSO4.5H2O) was carried out with D-glucose as a reductant, in the presence of organic additive polyvinyl pyrrolidone (PVP K-30). The synthesized CuO2 nanoparticles have been characterized by UV-Vis Spectroscopy, Scanning Electron Microscope (SEM), X-ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. The SEM images showed that the morphology of the Cu2O nanostructures was highly uniform and growth was controlled. The nanoparticles were found to be single crystalline and monodispersed in octahedral shapes. Such type of morphology has not been reported yet using PVP K-30 as surfactant. XRD peaks confirmed the single crystalline phases of Cu2O nanoparticles. The growth of the monodispersed single crystals has been explained on the basis of diffusion mechanism. The grain size of the nanoparticles was found to be in the range of 34- 45 nm. UV-visible absorptions spectra showed that the bandgap transition is around 635 nm (~ 2.0 eV). FTIR transmission peak at 623 cm-1 confirmed Cu(I)-O vibrations, which is very well consistent with the reported value.

Keywords:
cuprous oxide (Cu2O) nanocrystals solvothermal synthesis semiconducting materials

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 5

References:

[1]  Service R. F. “Nanotoxicology. Nanotechnology grows up” Science, 18, 1732-1734 (2004).
 
[2]  Sahoo S. K., Parveen S, Panda, “Nanotechnology platforms and physiological challenges for cancer therapeutics J., Nanomedicine, 3 20-31 (2007).
 
[3]  Twan L., Vladimir S., Karel U., “Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells” Nano Today, 5 197-212 (2010).
 
[4]  Yang F., Tang Q., Zhong X., “Cerium oxide nanoparticles in cancer” Int J Nanomedicine, 7 835-844 (2012).
 
[5]  Lee P., Zhang R., Li V., et al., “Enhancement of anticancer efficacy using modified lipophilic nanoparticle drug encapsulation” Int J Nanomedicine, 7 731-737 (2012).
 
[6]  Murphy E. A., Majeti B. K., Barnes L. A., et al., “Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis” Proc Natl Acad Sci USA, 105 9343-9348 (2008).
 
[7]  Siddiqui I. A., Adhami V. M., Christopher J., Chamcheu, Mukhtar H., “Impact of nanotechnology in cancer: emphasis on nanochemoprevention” Int J Nanomedicine, 7 591-605 (2012).
 
[8]  Stevens M. M., Ghadiali J. E., Cohen B. E., “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space” ACS Nano, 4 4915-4919 (2010).
 
[9]  Jopnani N., Kushwaha S., Athar T., “Surface Plasmon Spectroscopy of Nanosized Metal Particles” International journal of green nanotechnology: Mat. Sci. Eng., 1 67-73 (2009).
 
[10]  Guajardo-Pacheo M. J., Morales-Sanchz J. E., Gernandez J. and Ruiz F., “Multifunctionalized cotton fabric using Cu nanoparticles” Material Letters, 64 (12), 1361-1364 (2010).
 
[11]  Prem kumar T., Geckeler K. E., “Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application” Small, 2 (5), 616-620 (2006).
 
[12]  Ren G., Hu D., Cheng E. W., Vargas-Reus M. A., Reip P., Allaker R. P., “Characterisation of copper oxide nanoparticles for antimicrobial applications” Int J Antimicrob Agents, 33 (6), 587-590 (2009).
 
[13]  Hsieh C. T., Chen J. M., Lin H. H., Shih H. C., “Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism” Appl Phys Lett., 82 (19) 3316-3318 (2003).
 
[14]  Zhang X., Wang G., Liu X., “Antitumor Activities of Metal Oxide Nanoparticles, “J Phys Chem C Nanomater Interfaces, 112 (43), 16845-16849 (2008).
 
[15]  Perelshtein I., Applerot G., Perkas N., “Preparation and Characterization of Some Nanometal Oxides Using Microwave Technique and Their Application to Cotton Fabrics” Surface and Coatings Technology, 204 (1-2), 54-57 (2009).
 
[16]  Grozdanov I., “Electroless chemical deposition technique for Cu2O thin films” Mater. Lett. 19, 281 (1994).
 
[17]  Shen M. Y., Yokouchi T., Koyama S., Goto T., “American Association for the Advancement of Science” Phys. Rev. B, 56, 1306 (1997).
 
[18]  Shi W., Lim K., Liu X., “Ultra-high efficiency white light emitting diodes” J. Appl. Phys. 81, 2822 (1997).
 
[19]  Briskman R. N., “A Study of Electrodeposited Cuprous-Oxide Photovoltaic Cells” Sol. Energy Mater. Sol. Cells, 27, 361 (1992).
 
[20]  Olsen L. C., Addis F. W., Miller W., “As a solar cell material, cuprous oxide -Cu2O, has the advantages of low cost and great availability” Sol. Cells 7, 247 (1982).
 
[21]  Hara M., Kondo T., Komoda M., Ikeda S., Shinohara K., Tanaka A., Kondo J. N., Domen K., “Graphene oxide as the passivation layer for CuxO photocatalyst on a plasmonic Au film and the corresponding photoluminescence study” Chem. Commun. 357 (1998).
 
[22]  Ikeda S., Takata T., Kondo T., Hitoki G., Hara M., Kondo J. N., Domen K., Hosono H., Kawazoe H., Tanaka A., “Visible-light-responsive copper (II) borate photocatalysts with intrinsic midgap states for water splitting”, Chem. Commun. 2185 (1998).
 
[23]  De Jongh P. E., Vanmaekelbergh D., Kelly J. J., “Cu2O: a catalyst for the photochemical decomposition of water?”, Chem. Commun. 1069 (1999).
 
[24]  Chun-Hong K. and Michael H. H., “Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices” Nano Today, 5, 106 (2010).
 
[25]  Wang Z., Wang H., Wang L. and Pan L., “Supercapacitors based on nanostructured carbon”, J. Phys. Chem. Sol. 70, 719 (2009).
 
[26]  Zhang X., Xie Y., Xu F., Liu X. and Xu D., “Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis” Inorg. Chem. Commun. 6, 1390-9 (2003).
 
[27]  Xu H., Wang W. and Zhu W., “A Self-Assembly Mechanism Of Cuprous Oxide Nanoparticles In Aqueous Colloidal Solutions”, Micropor. Mesopor. Mat. 95, 321 (2006).
 
[28]  Suleiman M., Mousa M., Amjad H., Belkheir H., Taibi. H., Ismail W., “Copper (II)-Oxide Nanostructures: Synthesis, Characterizations and their Applications–Review”, Mater. Environ. Sci. 1 (5), 792-797 (2013).
 
[29]  Miss Ritu, Int. Chem. Res., 3 (i-3), 10-17 (2013).
 
[30]  Huang L., Peng F., Yu H. and Wang H., “Synthesis of Cu2O nanoboxes”, Mater. Res. Bull. 43, 3407 (2008).
 
[31]  Shin H. S., Song J. Y. and Yu J., “Template-assisted electrochemical synthesis of cuprous oxide nanowires”, Mater. Lett. 63, 397 (2009).
 
[32]  Wang C. Y., Zhou Y., Chen Z. Y., Cheng B., Liu H. J., Mo X., “Photonic & Sonic Band-Gap and Metamaterial Bibliography”, J. Colloid Interface Sci. 220, 468 (1999).
 
[33]  Shu-Jian C., Xue-Tai C., Xue Z., Li-Hong L., Xiao-Zeng Y., “Crystal Structure Control of CdSe Nanocrystals in Growth and Nucleation”, Journal of Crystal Growth 246, 169-175 (2002).
 
[34]  Karthik K., Ponnuswamy S., Nano Vision. 1, 68-73 (2011).
 
[35]  Ming Y., Chun-Kwei W., Yongbing L., Clemens B., Jeffrey T. K., Yimei Z. and Stephen O., J. Am. Chem. Soc. 127 (26), 9507 (2005).
 
[36]  Socrates, G., “Infrared and Raman Characteristic Group Frequencies”, John Wiley & Sons Ltd., New York, USA (2001).
 
[37]  Melendres C. A., Bowmaker G. A., Leger J. M. and Beden B., “Advances in in-situ Spectroelectrochemical fourier transform infrared spectroscopy”, J., Electroanal. Chem. 449, 215-218 (1998).
 
[38]  Zhang Y. C., Tang J.Y., Wang G.L., Zhang M. and Hu X.Y., “Tailor the crystal shape in high-temperature solution resulted in a simultaneous growth of CuO and Cu2O”, J. Cryst. Growth, 294, 278-282 (2006).
 
[39]  Prakash I., Muralidharan P. N., Nallamuthu M., Venkateswarlu and Satyanarayana N., “Nanocrystallite size cuprous oxide: Characterization of copper nanopowders after natural aging”, Mater. Res. Bull. 42, 1619-1624 (2007).