[1] | Bidault, F., Brett, D.J.L., Middleton, P.H., Brandon, N.P., “Review of gas diffusion cathodes for alkaline fuel cells,” J Power Sources, 187 (1). 39-48. 2009. |
|
[2] | Soehn, M., Lebert, M., Wirth, T., Hofmann, S., Nicoloso, N., “Design of gas diffusion electrodes using nanocarbon,” J Power Sources, 176 (2). 494-498. 2008. |
|
[3] | Hsieh, C-T., Lin, J-Yi., Wei, J-L., “Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes,” Int J Hydrogen Energy, 34 (2). 685-693. 2009. |
|
[4] | Wang, X., Waje, M., Yan, Y., “CNT-Based Electrodes with High Efficiency for PEMFCs,” Electrochem Solid-State Lett, 8 (1). A42-A44. 2005. |
|
[5] | Wang, G., Shen, X., , J., Park, J., “Graphene nanosheets for enhanced lithium storage in lithium ion batteries,” Сarbon, 47 (8). 2049-2053. 2009. |
|
[6] | Xin, Y., Liu, J., Jie, X., Liu, W., Liu, F., Yin, Y., Gu, J., Zou, Z., “Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts,” Electrochimica Acta, 60. 354-358. 2012. |
|
[7] | Lin, Z., Waller, G,, Liu, Y., Liu, M., Wong, C.P., “Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea and its electrocatalytic activity toward oxygen reduction reaction,” Adv Energy Mater, 2 (7). 884-888. 2012. |
|
[8] | Qu, L.T., Liu, Y., Baek, J.B., Dai, L.M., “Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells,” ACS Nano 4. 1321-1326. 2010. |
|
[9] | Lin, Z.Y., Song, M.K., Ding, Y., Liu, Y., Liu, M.L., Wong, C.P., “Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction,” Phys Chem Chem Phys, 14. 3381-3387. 2012. |
|
[10] | Shao, Y., Zhang, S., Wang, C., Nie, Z., Liu, J., Wang, Y., Lin, Y., "Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction," J Power Sources, 195. 4600-4605. 2010. |
|
[11] | Cano-Márquez, A.G., Rodriguez-Macias, F.J., Campos-Delgado, J., et al., “Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes,” Nano Lett, 9. 1527-1533. 2009. |
|
[12] | Kosynkin, D.V., Lu, W., Sinitskii, A., Pera, G., Sun, Z., Tour, J.M., “Highly conductive grapheme nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor,” ACS Nano, 5. 968-974. 2011. |
|
[13] | Morelos-Gómez, A., Vega-Díaz, S.M., González, V.J., et al, “Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges,” ACS Nano, 6. 2261-2272. 2012. |
|
[14] | Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H., “Narrow graphene nanoribbons from carbon nanotubes,” Nature, 458. 877-880. 2009. |
|
[15] | Valentini, L., “Formation of unzipped carbon nanotubes by CF4 plasma treatment,” Diamond & Related Materials, 20. 445-448. 2011. |
|
[16] | Mohammadi, S., Kolahdouz, Z., Darbari, S., Mohajerzadeh, S., Masoumi, N., “Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing,” Carbon, 52. 451-463. 2013. |
|
[17] | Janowska, , Ersen, O., Jacob, T., et al, “Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation,” Appl Catal A, 371. 22-30. 2009. |
|
[18] | Vadahanambi, S., Jung, J-H., Kumar, R., Kim, H-J., Oh, I-K., “An ionic liquid-assisted method for splitting carbon nanotubes to produce graphene nano-ribbons by microwave radiation,” Carbon, 53. 391-398. 2013. |
|
[19] | Elías, A.L., Botello-Méndez, As.R., Meneses-Rodríguez, D., et al, “Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels,” Nano Lett, 10. 366-372. 2009. |
|
[20] | , Bhandari, S., Srivastava, R.K., Jariwala, D., Srivastava, A., “Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes,” Nanoscale, 3. 3876-3882. 2011. |
|
[21] | Jiao, L., Wang, X., Diankov, G., Wang, H., Dai, H., “Facile synthesis of high-quality graphene nanoribbons,” Nat Nanotechnol, 5. 321-325. 2010. |
|
[22] | Xie, L., Wang, H., Jin, C., et al1, “Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties,” J Am Chem Soc, 133. 10394-10397. 2011. |
|
[23] | Kumar, P., Panchakarla, L.S., Rao, C.N.R., “Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons,” Nanoscale, 3. 2127-2129. 2011. |
|
[24] | Kim, K., Sussman, A., Zettl, A., “Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes,” ACS Nano, 4. 1362-1366. 2010. |
|
[25] | Talyzin, A.V., Luzan, S., Anoshkin, I.V., et al, “Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen: Road to graphane nanoribbons,” ACS Nano, 5. 5132-5140. 2011. |
|
[26] | , M.C., Xu, W., Proenca, M.F., Novais, R.M., Laegsgaard, E., Besenbacher, F., “Unzipping of functionalized multiwall carbon nanotubes induced by STM,” Nano Lett, 10. 1764-1768. 2010. |
|
[27] | Shinde, D.B., Debgupta, J., Kushwaha, A., Aslam, M., Pillai, V.K., “Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons,” J Am Chem Soc, 133. 4168-4171. 2011. |
|
[28] | Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., et al, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,” Nature, 458. 872-876. 2009. |
|
[29] | Zhang, S., Zhu, L., Song, H., et al, “How graphene is exfoliated from graphitic materials: synergistic effect of oxidation and intercalation processes in open, semi-closed, and closed carbon systems,” J Mater Chem, 22. 22150-22154. 2012. |
|
[30] | Zhu, Y., Murali, S., Cai, W., et al, “Graphene and graphene oxide: Synthesis, properties, and applications,” Adv Mater, 22. 3906-3924. 2010. |
|
[31] | Pei, S., Cheng, H.-M., “The reduction of graphene oxide,” Carbon, 50. 3210-3228. 2012. |
|
[32] | Danilov, M.O., Kolbasov, G.Ya., Rusetskii, I.A., Slobodyanyuk, I.A., “Electrocatalytic properties of multiwalled carbon nanotubes-based nanocomposites for oxygen electrodes,” Russian J Appl Chem, 85. 1536-1540. 2012. |
|
[33] | Bratsch, S.G., “Standard electrode potentials and temperature coefficients in water at 298.15 K,” J Phys Chem, 18. 1-21. 1989. |
|
[34] | Danilov, M.O., Slobodyanyuk, I.A., Rusetskii, I.A., Kolbasov, G.Ya., “Reduced graphene oxide: a promising electrode material for oxygen electrodes,” J Nanostructure Chemistry, . 2013. |
|
[35] | , Introduction to Physic, Wiley, 8th Edition. 2004. |
|
[36] | Nemanich, R.J., Solin, S.A., “Observation of an anomolously sharp feature in the 2nd order Raman spectrum of graphite,” Solid State Comm, 23. 417-420. 1977. |
|
[37] | Nemanich, R., Solin, S., “First-and second-order Raman scattering from finite-size crystals of graphite,” Phys Rev B, 20. 392-401. 1979. |
|
[38] | Vidano, R., Fishbach, D., “Observation of Raman band shifting with excitation wavelength for carbons and graphites,” Solid State Comm, 39. 341-344. 1981. |
|
[39] | Ferrari, A., Basko, D., “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nature nanotechnology, 8. 235-246. 2013. |
|
[40] | Cancado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Jorio, A., Coelho, L.N., Magalhăes-Paniago, R., Pimenta, M.A., “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy,” Appl. Phys.Lett., 88163106. 2006. |
|
[41] | Yanchuk, I.B., Koval′s′ka, E.O., Brichka, A.V., Brichka, S.Ya., “Raman scattering studies of the influence of thermal treatment of multi-walled carbon nanotubes on their structural characteristics,” Ukr. J. Phys., 54. 407-412. 2009. |
|