American Journal of Materials Engineering and Technology
ISSN (Print): 2333-8903 ISSN (Online): 2333-8911 Website: https://www.sciepub.com/journal/materials Editor-in-chief: Serge Samper
Open Access
Journal Browser
Go
American Journal of Materials Engineering and Technology. 2017, 5(1), 1-6
DOI: 10.12691/materials-5-1-1
Open AccessArticle

Study of Cavitation Erosion Experiments on Thermally Oxidized Rutile Phase TiO2 Films on Stainless Steel

Abdelkader Nebatti1, , Christian Pflitsch1, Georg Brors1, Benjamin Curdts1 and Burak Atakan1, 2

1Thermodynamics, IVG, Mechanical Engineering, University of Duisburg Essen, Campus Duisburg, Lotharstr. 1, D-47057, Germany

2CeNIDE, Center for Nanointegration Duisburg-Essen, Germany

Pub. Date: March 22, 2017

Cite this paper:
Abdelkader Nebatti, Christian Pflitsch, Georg Brors, Benjamin Curdts and Burak Atakan. Study of Cavitation Erosion Experiments on Thermally Oxidized Rutile Phase TiO2 Films on Stainless Steel. American Journal of Materials Engineering and Technology. 2017; 5(1):1-6. doi: 10.12691/materials-5-1-1

Abstract

A technique to deposit titanium films with rutile-TiO2 layer at the top was carried out in two steps: the deposition of titanium by means of cathodic vacuum arc (CVA) followed by a thermal oxidation technique was investigated. As a result, well adhering rutile films occurred in the near surface region. The uncoated and coated substrates were investigated using X-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDX). The presence of rutile phase titanium dioxide and titanium metal was confirmed by XRD. Cavitation erosion was used to investigate the protective adhesion properties of these coatings. Cavitation erosion tests confirmed that rutile TiO2 films with a Ti inter layer adhere well to stainless steel substrates and protect the substrate from erosion.

Keywords:
titanium dioxide TiO2 rutile phase cathodic vacuum arc thermal oxidation cavitation erosion

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  C. Lee and D. Kim, Journal of Electroceramics 33 (2014) 12.
 
[2]  U. Diebold, Surface science reports 48 (2003) 53.
 
[3]  A. Nebatti, C. Pflitsch, C. Eckert, and B. Atakan, Progress in Organic Coatings 67 (2010) 356.
 
[4]  M. Garcıa-Alonso, L. Saldana, G. Valles, J. L. González-Carrasco, J. Gonzalez-Cabrero, M. Martınez, E. Gil-Garay, and L. Munuera, Biomaterials 24 (2003) 19.
 
[5]  X. Chen and S. S. Mao, Chemical reviews 107 (2007) 2891.
 
[6]  M. Horprathum, P. Eiamchai, P. Chindaudom, A. Pokaipisit, and P. Limsuwan, Procedia Engineering 32 (2012) 676.
 
[7]  V. Bessergenev, R. Pereira, M. Mateus, I. Khmelinskii, D. Vasconcelos, R. Nicula, E. Burkel, A. Botelho do Rego, and A. Saprykin, Thin Solid Films 503 (2006) 29.
 
[8]  D. Siva Rama Krishna and Y. Sun, Surface and Coatings Technology 198 (2005) 447.
 
[9]  G. Wang and H. Zreiqat, Materials 3 (2010) 3994.
 
[10]  P. Dearnley, K. Dahm, and H. Çimenoǧlu, Wear 256 (2004) 469.
 
[11]  D. Krishna and Y. Sun, Applied Surface Science 252 (2005) 1107.
 
[12]  R. L. Boxman, D. Haber, D. Sanders, and P. J. Martin, Handbook of Vacuum Arc Science & Technology: Fundamentals and Applications, Cambridge University Press, 2008.
 
[13]  H. Ollendorf and D. Schneider, Surface and Coatings Technology 113 (1999) 86.
 
[14]  C. Pflitsch, B. Curdts, V. Buck, and B. Atakan, Surface and Coatings Technology 201 (2007) 9299.
 
[15]  Z. Zheng, Y. Zheng, W. Sun, and J. Wang, Tribology International 90 (2015) 393.
 
[16]  F. Deuerler, O. Lemmer, M. Frank, M. Pohl, and C. Heßing, International Journal of Refractory Metals and Hard Materials 20 (2002) 115.
 
[17]  E. J. J. Schuhmann, V. Buck Wiley-VCH, Weinheim ( 1999) p141.
 
[18]  M. Ohring, Materials science of thin films, Academic press, 2001.
 
[19]  V. Moura, A. Y. Kina, S. S. M. Tavares, L. Lima, and F. B. Mainier, Journal of Materials Science 43 (2008) 536.
 
[20]  D. Peckner and I. M. Bernstein, Handbook of stainless steels, McGraw-Hill New York, NY, 1977.
 
[21]  ASTM G32-10 Standard Test Method for Cavitation Erosion Using Vibratory Apparatus; ASTM International: West Conshohocken, PA, USA, 2010.
 
[22]  Castle, J. E.; Clayton, C. R.: The use of in the x-ray photo-electron spectroscopy analyses of passive layers on stainless steel. Corrosion Science 1977, 17, 7-26.
 
[23]  P. Prepelita, R. Medianu, B. Sbarcea, F. Garoi, and M. Filipescu, Applied Surface Science 256 (2010) 1807.
 
[24]  C. Pflitsch, A. Muhsin, U. Bergmann, and B. Atakan, Surface and Coatings Technology 201 (2006) 73.
 
[25]  D. S. R. Krishna, Y. Sun, and Z. Chen, Thin Solid Films 519 (2011) 4860.