American Journal of Materials Engineering and Technology
ISSN (Print): 2333-8903 ISSN (Online): 2333-8911 Website: Editor-in-chief: Serge Samper
Open Access
Journal Browser
American Journal of Materials Engineering and Technology. 2021, 9(1), 31-47
DOI: 10.12691/materials-9-1-3
Open AccessCritical Review

Adaptive Camouflage Textiles with Thermochromic Colorant and Liquid Crystal for Multidimensional Combat Background, a Technical Approach for Advancement in Defence Protection

Md. Anowar Hossain1, 2,

1School of Fashion and Textiles, RMIT University, 25 Dawson Street, Brunswick, Melbourne, VIC 3056, Australia

2Department of Textile Engineering, City University, Savar, Dhaka, Bangladesh

Pub. Date: December 16, 2021

Cite this paper:
Md. Anowar Hossain. Adaptive Camouflage Textiles with Thermochromic Colorant and Liquid Crystal for Multidimensional Combat Background, a Technical Approach for Advancement in Defence Protection. American Journal of Materials Engineering and Technology. 2021; 9(1):31-47. doi: 10.12691/materials-9-1-3


Adaptive camouflage textiles with color changing and blending into the combat background (CB) and surrounding environments have been a great challenge for the color scientist. Defense professional urgently needs adaptive camouflage textiles for personal protection in extreme weather conditions and multidimensional CB environments. A technical approach of adaptive camouflage textiles can be formulated by using a novel combination of thermochromic colorant and liquid crystal. Absorption of heat can rapidly accelerate the thermal response of thermochromic liquid crystal (TLC) by changing molecular structure with thermo-color-light (TCL) mechanism of absorption and reflection of light at different wavelength. TLC shows chameleon performance of color tone which changes the light reflection of surface color; thus, target objects can be artificially confused by the replacement of chromatic appearance in multidimensional CB environments. TLC can be applied as deceiving mechanism and surface modification of textile substances with combination of dyes/pigment. TLC modified camouflage textiles have possibility of diverse applications in different weather of combat zone for defense actions and different CB environments. A single formulated camouflage textiles may be suited with different CB environments under TLC mechanism. Chameleon type of color tone in cooling and heating conditions of thermochromic changes automatically in both reversible and irreversible way. Therefore, the technical colorant combination has been preached for suitability of adaptation with surrounding CB. TLC treated textiles can be experimented with spectroscopic, microscopic, and photographic illumination. The applications of adaptive camouflage textiles are not only limited to military textiles, but also the principle of technologies have versatile applications for clothing of personal protection including fashionable garments production.

adaptive camouflage textiles thermochromic liquid crystal (TLC) thermochromic dyes pitch length combat background defence protection

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Toet, A. ‘Photosimulation camouflage detection test’, US Army Natick Soldier Research. Development and Engineering Center ATTN, 2009, MA 01760-5020.
[2]  Neider, M.B., Zelinsky, G.J., Searching for camouflaged targets: effects of targetebackground similarity on visual search. Vis. Res., 2006, 46, 2217-2235.
[3]  Adaptive Camouflage helps blend into the environment, Accessed July 2020,
[4]  Rafael C. Duarte, Augusto A. V. Flores, Martin Stevens, Camouflage through colour change: mechanisms, adaptive value and ecological significance, The Royal Society Publishing, May 2017.
[5]  Scott, R. A., Textiles in defence. In A. R. Horrocks & S. C. Anand (Eds.), Handbook of technical textiles, Abingdon: Woodhead, 2000, (pp. 425-460).
[6]  Joshi, M., & Bhattacharyya, A., Camouflage fabric - Mimicking nature. Asian Technical Textile, 2008, 2, 39-43.
[7]  Tolley, K. A., & Herrel, A., The biology of chameleons: Chameleon behavior and color change. London: University of california press, 2004.
[8]  Joshi, M., & Bhattacharyya, A., Nanotechnology - A new route to high performance functional textiles. Textile Progress, 2011, 43, 155-233.
[9]  Hu, J., Meng, H., Li, G., & Ibekwe, S. I., A review of stimuli-responsive polymers for smart textile applications. Smart Materials and Structures, 2012, 21, 1-23.
[10]  Yi, S., Sun, S., Deng, Y., & Feng, S., Preparation of composite thermochromic and phase-change materials by the sol-gel method and its application in textiles. The Journal of The Textile Institute, 2015, 106, 1071-1077.
[11]  K. R. Karpagam, K. S. Saranya, J. Gopinathan & Amitava Bhattacharyya, Development of smart clothing for military applications using thermochromic colorants, The Journal of The Textile Institute, Jan. 2016, ISSN: 0040-5000 (Print) 1754-2340 (Online).
[12]  Narayanan, S. C., Karpagam, K. R., & Bhattacharyya, A., Nanocomposite coatings on cotton and silk fibers for enhanced electrical conductivity. Fibers and Polymers, July, 2015, 16, 1269-1275.
[13]  Meunier, L., Kelly, F. M., Cochrane, C., & Koncar, V., Flexible displays for smart clothing: Part II - Electrochromic displays. Indian Journal of Fiber & Textile Research, 2011, 36, 429-435.
[14]  Rubacha, M., Thermochromic cellulose fibers. Polymers for Advanced Technologies, 2007, 18, 323-328.
[15]  Tang, S. L. P., & Stylios, G. K., An overview of smart technologies for clothing design and engineering. International Journal of Clothing Science and Technology, 2006, 18, 108-128.
[16]  Ma, Y., Zhu, B., & Wu, K., Preparation and solar reflectance spectra of chameleon type building coatings. Solar Energy, 2001, 70, 417-422.
[17]  Ma, Y., Zhang, X., Zhu, B., & Wu, K., Research on reversible effects and mechanism between the energy-absorbing and energy-reflecting states of chameleon-type building coatings. Solar Energy, 2002, 72, 511-520.
[18]  Karlessi, T., Santamouris, M., Apostolakis, K., Synnefa, A., & Livada, I., Development and testing of thermochromic coatings for buildings and urban structures. Solar Energy, 83, 538-551, 2009.
[19]  Glover, L. C., & Lopez, E. F., U.S. Patent No. 4,105,583. Washington, DC: U.S. Patent and Trademark Office, 1978.
[20]  Billah, S. M. R., Christie, R. M., & Shamey, R., Direct coloration of textiles with photochromic dyes. Part 1: Application of spiroindolinonaphthoxazines as disperse dyes to polyester, nylon and acrylic fabrics. Coloration Technology, 2008, 124, 223-228.
[21]  Kulcar, R., Friskovec, M., & Gunde, M. K., Thermochromic inks - Dynamic colour possibilities. CREATE Conference, Gjovik, Norway, January, 2010.
[22]  Marie Ledendal, Thermochromic textiles and sunlight activating systems, an alternative means to induce colour change, Ph. D Thesis, Heriot-Watt University, School of Textiles and Design, August, 2015.
[23]  Alexander N. Bourque, Investigations of reversible thermochromism In three-component systems, Ph.D Thesis, Dalhousie University Halifax, Nova Scotia, March 2014.
[24]  Nilin M. Rao, Biomedical application of thermochromic liquid crystals and leuco dyes for temperature monitoring in the extremities, Kent State University College of Education, Health, and Human Services, December 2016.
[25]  Thermochromism, Accessed July 2020,
[26]  Muksit Ahamed Chowdhury, Mangala Joshi, Bhupendra Butola, Improving the photostability of thermochromic colourants, Journal of Textile & Apparel Technology and Management, 2015.
[27]  Martina Vikova´ and Marcela Pechova´,Study of adaptive thermochromic camouflage for combat uniform, Textile Research Journal, 2020, 0(00) 1-15.
[28]  J. E. Gilligan, et al, camol luilage 13y coni'i ollable color Chianges, 1lt rcscarch institute, april 1974.
[29]  Marcin Rubacha, Thermochromic cellulose fibers, Polym. Adv. Technol. 2007, 18: 323-328.
[30]  W. Feng, S. H. Patel, M-Y. Young, J. L. Zunino Iii, Smart Polymeric Coatings—Recent Advances, Advances In Polymer Technology, 2007, Vol. 26, No. 1, 1-13.
[31]  Kate Georgina Lloyd, The School of Materials, An investigation into the potential for thermochromic colorant application, A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences, 2015.
[32]  Kyle Henry Conner, 211 Third St. S., Columbus, Miss. 39701, methods for increasing a Camouflaging effect and articles So produced, United States Patent, Patent Number: 5, 846, 614(45) Date of Patent: Dec. 8, 1998.
[33]  Michelle t. Brannum, Functional performance of liquid crystalline elastomers, Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Macromolecular Science and Engineering Case western reserve university, May, 2019.
[34]  Patra, A. K.; Dahiya, S., Microencapsulation - technique and applications, Source: Man-Made Textiles in India, Jul 2009, Vol. 52 Issue 7, p224-232. 9p.
[35]  Tammy Lynn Smith, Belle Mead; Ray Baughman, Morris Plains; Mary Frances Martin, Hillsdale, all of N.J.;Wonsik Choi, Philadelphia, Pa.; Jeffrey Moulton, Morristown, n.j., colored articles and compositions And methods for their fabrication, United States Patent, patent number: 6,074,742(45) Date of Patent: Jun. 2000.
[36]  Anti-reflective coatings: A critical, in-depth review, Hemant Kumar Raut, V. Anand Ganesh, A. Sreekumaran Nairb and Seeram Ramakrishna, June 2011.
[37]  Sunil Kumar, Awais Qadir, Francis Maury, Visible Thermochromism in Vanadium Pentoxide Coatings, ACS Appl. Mater. Interfaces, May 2017, 9, 25, 21447-21456.
[38]  Amit Sengupta & Jagadananda Behera, Smart Chromic Colorants Draw Wide Attention for the Growth of Future Intelligent Textile Materials, Journal of Advanced Research inManufacturing, Material Science & Metallurgical Engineering, 2014, Volume 1, Issue 2.
[39]  Carlos I. Aguirre, Edilso Reguera, and Andreas Stein, Tunable Colors in Opals and Inverse Opal Photonic Crystals, Adv. Funct. Mater. 2010, 20, 2565-2578.
[40]  M. L. Gulrajani, Chromic materials for technical textile applications, Advances in the Dyeing and Finishing of Technical Textiles, Woodhead Publishing Series in Textiles, 2013, P: 3-36.
[41]  Timothy L Dawson, Changing colours: now you see them, now you don’t, Coloration Technology, Dyers and Colourists, Color. Technol., 2010, 126, 177-188.
[42]  Muksit A Chowdhury, Bhupendra S Butola and Mangala Joshi, Application of thermochromic colorants on textiles: temperature dependence of colorimetric properties, Coloration Technology, Society of Dyes and Colorist, Accepted: July 2012.
[43]  Emil Karshalev, Rajan Kumar, Itthipon Jeerapan, Roxanne Castillo, Isaac Campos, and Joseph Wang, Multistimuli-Responsive Camouflage Swimmers, Chem.Mater. Feb. 2018, 30, 5, 1593-1601.
[44]  Faten Ajeeb, Basel Younes, Alaa K Khsara, Investigating the Relationship between Thermochromic Pigment Based knitted Fabrics Properties and Human Body Temperature, IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE), June 2017, e-ISSN: 2348-019X, p-ISSN: 2348-0181, Volume 4, Issue 3, PP 44-52.
[45]  Heloisa Ramlow, Karina Luzia Andrade & Ana Paula Serafini Immich, Smart textiles: an overview of recent progress on chromic textiles, The Journal of The Textile Institute, 2020.
[46]  Esraa El-Khodary1, Bahira Gebaly2, Eman Rafaat2, Ahmed AlSalmawy, Critical Review on Smart Chromic Clothing, Journal of Design Sciences and Applied Arts, January, 2010.
[47]  Lyle D. Small, Gerald Highberger, Thermochromic Ink Formulation and Method of use, United States Patent, Patent Number: 6, 139, 779, Date of Patent: Oct., 2000.
[48]  Cunjiang Yua, Yuhang Lib,c, Xun Zhangd, Xian Huangd, Viktor Malyarchukd and, Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins, 2020.
[49]  Andy Towns,The heat is on for new colours, Journal of the Society of Dyers and Colourists, July 1999,
[50]  IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), February 2016.
[51]  M. A. Chowdhury, M. Joshi and B. S. Butola, Photochromic and Thermochromic Colorants in Textile Applications, Journal of engineered fibre and fabric, 2014.
[52]  Z. Ahmed, Y. Wei, R. Torah and J. Tudor, “Actively actuated all dispenser printed thermochromic smart fabric device,” in Electronics Letters, 2016, vol. 52, no. 19, pp. 1601-1603, 15 9.
[53]  Youliang Cheng, Xiaoqiang Zhang, Changqing Fang, Jing Chen, Zhen Wang. Discoloration mechanism, structures and recent applications of thermochromic materials via different methods: A review. J. Mater. Sci. Technol., 2018, 34(12): 2225-2234.
[54]  Xiaoye Geng, Wei Li, Qing Yin, Yu Wang, Na Han, Ning Wang, Junmin Bian, Jianping Wang, Xingxiang Zhang, Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity, Energy, June 2018.
[55]  Yu Guan, Liping Zhang, DongWang, John L.West , Shaohai Fu, Preparation of thermochromic liquid crystalmicrocapsules for intelligent functional fiber, Materials and Design, 2018, 147, 28-34.
[56]  G. Salek, A. Demourgues, V. Jubera, A. Garcia, M. Gaudon, Mn2+ doped Zn3(PO4)2 phosphors: Irreversible thermochromic materials useful as thermal sensors, Optical Materials, 2015, 47, 323-327.
[57]  Odwa Mapazi, Philemon K. Matabola, Richard M. Moutloali, Catherine J. Ngila, A urea-modified polydiacetylene-based high temperature reversible thermochromic sensor: Characterisation and evaluation of properties as a function of temperature, Sensors and Actuators B, 2017, 252, 671-679.
[58]  Yurui Qu1, Qiang Li 1, Lu Cai1, Meiyan Pan1, Pintu Ghosh1, Kaikai Du1 and Min Qiu,Thermal camouflage based on the phase changing material GST, Light: Science & Applications, 2018, 7:26 Official journal of the CIOMP 2047-7538.
[59]  S.S. He, M.Y. Wei, F. Liu, W.L. Xue, L.D. Cheng, Risk Assessment of Bisphenol A (BPA) in Thermochromic Textiles, Proceedings of the 2nd Annual International Conference on Advanced Material Engineering, AME 2016.
[60]  Yang Jin, Xiaolong An and Mingqiao Ge A Heat-Stimulated Luminous Fiber Using Heat-Sensitive Green TF-G Pigment, Materials, March, 2018.
[61]  Yang Jin, Chen Shi, Xiaoqiang Li, Yiwen Wang, Fangfang Wang, Mingqiao Ge, Preparation and luminescence studies of thermosensitive PAN luminous fiber based on the heat sensitive rose red TF-R1 thermochromic pigment, Dyes and Pigments, 2017, Volume 139, P: 693-700.
[62]  K. R. Karpagam, K. S. Saranya, J. Gopinathan & Amitava Bhattacharyya Development of smart clothing for military applications using thermochromic colorants, The Journal of The Textile Institute, 2017, 108:7, 1122-1127.
[63]  Clarissa T. Martins, Bruno M. Sato, and Omar A. El Seoud, First Study on the Thermo-Solvatochromism in Aqueous 1-(1-Butyl)-3-methylimidazolium Tetrafluoroborate: A Comparison between the Solvation by an Ionic Liquid and by Aqueous Alcohols, J. Phys. Chem. B 2008, 112, 8330-8339.
[64]  Alicia Potuck, Sarah Meyers, Ariana Levitt, Eric Beaudette, Hong Xiao, C. C. Chu & Huiju Park, Development of Thermochromic Pigment Based Sportswear for Detection of Physical Exhaustion, FashionPractice,2016, 8:2, 279295.
[65]  Keith Ramig a, Olga Lavinda , David J. Szalda, Irina Mironova, Sasan Karimi, Federica Pozzi, Nilam Shah, Jacopo Samson, Hiroko Ajiki, Lou Massa, Dimitrios Mantzouris, Ioannis Karapanagiotis, Christopher Cooksey, The nature of thermochromic effects in dyeings with indigo, 6-bromoindigo, and 6,60 -dibromoindigo, components of Tyrian purple, Dyes and Pigments, 2015, 117, 37-48.
[66]  Arife Candaş adigüzel zengin, eylül küçükakin Behzat Oral bitlisli, Ageing behavior of temperature sensitive leathers, Journal of Textiles and Engineer, 2017/3 Cilt (Vol): 24 Sayı (No): 107.
[67]  Bozhen Wu, Liming Shi, Qi Zhang, and Wen-Jun Wang, Microencapsulation of 1-hexadecanol as a phase change material with reversible thermochromic properties, The Royal Society of Chemistry 2017 RSC Adv., 2017, 7, 42129-42137.
[68]  Xiaoguang Ma, Shang Zhao, Liang Wang & HuaJian Zhou, Research on the behaviors of extending thermochromic colors for a new thermochromic microcapsule, The Journal of The TextileInstitute, 2019.
[69]  Zhilei Wu, Xiaoguang Ma, Xiling Zheng, Wenfang Yang, Qintao Meng & Zhenrong Zheng, Synthesis and characterization of thermochromic energy-storage microcapsule and application to fabric, The Journal of The Textile Institute, 2014, 105: 4, 398-405.
[70]  Gary A. Brist, Yamhill, OR (US); Patrick D. Boyd, Aloha, OR (US), carrier substrate with thermochromatic coating, United States Patent (10) Patent No.: US 7.691,458 B2 Brist et al. (45) Date of Patent: Apr. 6, 2010.
[71]  Wan Zhang, Xiaoqian Ji, Chanjuan Zeng, Kunlin Chen, Yunjie Yin and Chaoxia Wang, A new approach for the preparation of durable and reversible color changing polyester fabrics using thermochromic leuco dye-loaded silica nanocapsules, J. Mater. Chem. C, 2017, 5, 8169-8178.
[72]  Yangkai Zhang, Zexu Hu, Hengxue Xiang, Gongxun Zhai, Meifang Zhu, Fabrication of visual textile temperature indicators based on reversible thermochromic fibers, Dyes and Pigments ( IF 4.613), May, 2018.
[73]  Aybeniz Şeren, A. Candaş Adıgüzel Zengin, Behzat Oral Bitlisl, Thermo-chromic Pigments in Leather Finishing, XXXII. Congress of IULTCS May, 2013 Istanbul/Turkey.
[74]  Maja Jakovljević1, Rahela Kulčar1, Dario Tomašegović1 , Mojca Friškovec2, Marta Klanjšek Gunde, Colorimetric description of thermochromic printing inks, Acta Graphica , 2017, Vol 28, No 1, 7-14.
[75]  Muksit Ahamed Chowdhury, Mangala Joshi, Bhupendra Butola, Photochromic and Thermochromic Colorants in Textile Applications, March 2014, Journal of engineered fibers and fabrics, 2014, 9(1):107-123.
[76]  Thermochromic and Thermotropic Materials, edited by Arno Seeboth, and Detlef Lötzsch, Jenny Stanford Publishing, 2013, ProQuest Ebook Central,
[77]  Robert M. Christie, I. David Bryant, An evaluation of thermochromic prints based on microencapsulated liquid crystals using variable temperature colour measurement, Coloration Technology, March, 2005.
[78]  Muksit A Chowdhury, Bhupendra S Butola and Mangala Joshi, Application of thermochromic colorants ontextiles: temperature dependence ofcolorimetric properties, Coloration Technology, Society of Dyers and Colourists,Color. Technol., 2013, 129, 232-237.
[79]  Ahmet Sarı, Cemil Alkan, Ali Karaipekli, Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid micro PCM for thermal energy storage, Applied Energy 2010, 87, 1529-1534.
[80]  Morton W E and Hearle J W S, Physical Properties of Textile Fibres, Third edition, Textile Inst., Manchester, UK, 1993, p. 590.
[81]  X Tao (Ed.), Smart Textiles, Fabrics and Clothing (Cambridge: Woodhead Publishing, 2001, P: 59.
[82]  Stephen M. Burkinshaw, John Griffiths and Andrew D. Towns, Reversibly thermochromic systems based on pH-sensitive spirolactone-derived functional dyes, J. Mater. Chem., 1998, 8, 2677-2683.
[83]  MacLaren, D.C., White, M.A. Design rules for reversible thermochromic mixtures. J Mater Sci, 2005, 40, 669-676.
[84]  Qi Hong, Thomas X. Wu & Shin-Tson Wu, Optical wave propagation in a cholesteric liquid crystal using the finite element method, Liquid Crystals, 2003, 30: 3, 367-375.
[85]  Eds Eugene Wilusz, Military Textiles, Woodhead Publishing Limited, Cambridge, 2008, 193.
[86]  Eds. H. R. Mattila, Intelligent textile & clothing, Woodhead publishing limited, Cambridge, England, 2006, 296.
[87]  Ptalvenmaa, Tampere University of Technology, Finland, Introduction to chromic materials, Eds H. R. Mattila, Intelligent textile & clothing, Woodhead publishing limited,Cambridge, England, 2006, P: 203-204.
[88]  P. sudhakar and n. gobi, Camoufl age fabrics for military protective clothing, Eds Eugene Wilusz, Military Textiles, Woodhead Publishing Limited, Cambridge, 2008, 193.
[89]  P. Sudhakar, s. Krishnaramesh and d. Brightlivingstone, New developments in coatings and fibers for military applications, Eds Eugene Wilusz, Military Textiles, Woodhead Publishing Limited, Cambridge, 2008, 193.
[90]  Wbendkowska, Intelligent textiles with PCMs, Eds H. R. Mattila, Intelligent textile & clothing, Woodhead publishing limited, Cambridge, England, 2006, 296.
[91]  Robert M Christie, Sara Robertson and Sarah Taylor, Design Concepts for a Temperature-sensitive Environment Using Thermochromic Colour Change, Colour: Design & Creativity, 2007, 1 (1): 5, 1-11.
[92]  T. Karlessi M. Santamouris K. Apostolakis A. Synnefa I. Livada, Development and testing of thermochromic coatings for buildings and urban structures, Solar Energy, 2009, 538-551.
[93]  Ondrej Panak, Marketa Dr zkova, Marie Kaplanova, Insight into the evaluation of colour changes of leuco dye based thermochromic systems as a function of temperature, Dyes and Pigments, 2015.
[94]  Hallcrest, Handbook of Thermochromic Liquid, Crystal, 2014.
[95]  Rahela Kulcar, Mojca Friskovec, Nina Hauptman, Alenka Vesel, Marta Klanjsek Gunde, Colorimetric properties of reversible thermochromic printing inks, Dyes and Pigments 2010, 86, 271-277.
[96]  Ian Sage, Thermochromic liquid crystals, Liquid Crystals, 2011, 38: 11-12, 1551 1561.
[97]  Rahul AgrawalKrishna Deo Prasad SinghMani Kant Paswan, Review on Enhancement of Thermal Conductivity of Phase Change Materials with Nano-Particle in Engineering Applications, Materials Today: Proceedings, 2020, 22, 1617-1627.
[98]  Yanhong Yan, Yanan Zhu, Xuefeng Guo, Mingqiao Ge, The effects of inorganic pigments on the luminescent properties of colored luminous fiber, December 12, 2013.
[99]  Long Phan, Ward G. Walkup IV, David D. Ordinario, Emil Karshalev, Jonah-Micah Jocson, Anthony M. Burke, and Alon A. Gorodetsky, Reconfigurable Infrared Camouflage Coatings from a Cephalopod Protein, Advanced Materials, 2013.
[100]  S.Zylinski1, D. Osorio1 and A. J. Shohet, Cuttlefish camouflage: context-dependent body pattern use during motion, Proc. R. Soc. B, 2009, 276, 3963-396.
[101]  Kristina Basnec, Metka Hajzeri, Marta Klanjsek Gunde, Thermal and colour properties of leuco dye-based thermochromic composite with dodecanol solvent, J Therm Anal Calorim, 2017, 127: 55-61.
[102]  Mary Anne White, and Monique LeBlanc, J. Chem.Educ. 1999, 76, 9, 1201.
[103]  P. G. de Gennes and J. Prost , A review of: “The Physics of Liquid Crystals, second edition, Oxford Science Publications; Oxford University Press, 1993, Oxford, U.K.; New York, N.Y.; ISBN: 0-19-852024-7.
[104]  Bragg, W.L. The Crystalline State: Volume I. New York: The Macmillan Company, 1934.
[105]  Mc Quarrie, Donald A. Physical Chemistry: Amolecular Approach, Sausalito: University Science Books, 1997.
[106]  Braggs Law Deceber, 2019,
[107]  Rayleigh scattering, Accessed on July, 2020,
[108]  Ondrej Panak, Marketa Dr zkova, Marie Kaplanova, Insight into the evaluation of colour changes of leuco dye based thermochromic systems as a function of temperature, Dyes and Pigments, 2015, 120, 279-287.
[109]  Kristina Bašnec, Lidija Slemenik Perše, Boštjan Šumiga, Miroslav Huskić, Anton Meden, Aleš Hladnik, Bojana Boh Podgornik & Marta Klanjšek Gunde, Relation between colour- and phase changes of a leuco dye-based thermochromic composite, Scientific Reports, 2018, 8: 5511.
[110]  Rafael C. Duarte, Augusto A. V. Flores and Martin Stevens, Camouflage through colour change: mechanisms, adaptive value and ecological significance, The Royal society publishing, July, 2017.
[111]  Ossi Nokelainen, Ruth Maynes, Sara Mynott, Natasha Price, Martin Stevens, Improved camouflage through ontogenetic colour change confers reduced detection risk in shore crabs, Functional Ecology, 2019.
[112]  Rahela Kulčar, Mojca Friškovec, Nina Hauptman, Alenka Vesel, Marta Klanjšek Gunde, Colorimetric properties of reversible thermochromic printing inks, Dyes and Pigments. 2010. 86. 3. 271-277.
[113]  Dr. Jassim M. Abdulkarim, Alaa K. Khsara, Hanin N. Al-Kalany, Reham A. Alresly, Impact of Properties of Thermochromic Pigments on Knitted Fabrics, International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1693 ISSN 2229-5518.
[114]  Martin F. Schubert, David J. Poxson, Frank W. Mont, Jong Kyu Kim, and E. Fred Schubert, Performance of Antireflection Coatings Consisting of Multiple Discrete Layers and Comparison with Continuously Graded Antireflection Coatings, Applied Physics Express, 2010, 3, 082502.
[115]  Snell’s Law, Accessed July 2020,
[116]  Martina VIKOVÁ, AIC 2004 Color and Paints, Interim Meeting of the International Color Association, Proceedings 129 Visual assessment of UV radiation by colour changeable textile sensors, 2004.
[117]  James hulsey, Canton, GA (US), temperature sensitive color changing cable apparatus, United States, May 29, 2008.
[118]  Color changing materials: Zenit Co (Sweden) (Accessed on July 2020).
[119]  Color changing materials, (Accessed on July 2020).
[120]  Color changing materials, (Accessed on July 2020).
[121]  Color changing materials, (Accessed on July 2020).
[122]  LCR Hallcrest Smart Technology, Temperature Indicating Coatings, Pigments,Ink, Accessed July, 2020, Paint & Labels,
[123]  Color changing materials, (Accessed on July 2020).
[124]  Color changing materials, (Accessed on July 2020).
[125]  Periyasamy S, Khanna G, Thermochromic colors in textiles, Fibre2fashion, Accessed on May, 2014.
[126]  Bamfield P, Hutchings MG, Chromic Phenomena, Technological Applications of Color Chemistry, The Royal Society of Chemistry, UK, 2010, 1-125p.
[127]  Colorchanging materials, (Accessed on July 2020).
[128]  Color changing materials, (Accessed on July 2020).
[129] (Accessed on July 2020).
[130]  Sudhakar P, Gobi N, Chameleonic Textiles, Fibre2fashion (Accessed on July 2020).
[131]  Richard V. Gregory, Robert J. Samuels, Tim Hanks, Chameleon Fibers: Dynamic Color Change From Tunable Molecular and Oligomeric Devices, US National Textile Centre Annual Report M-98 C01, November 1999.
[132]  Lin Xiao, He Ma, Junku Liu, Wei Zhao, Yi Jia, Qiang Zhao and et al. Fast Adaptive Thermal Camouflage Based on Flexible VO₂/Graphene/CNT Thin Films, NanoLett. December, 2015, 15(12): 8365-70.
[133]  Huanzheng Zhu, Qiang Li, Chunqi Zheng, Yu Hong, Ziquan Xu, Han Wang, High-temperature infrared camouflage with efficient thermal management, Light Sci Appl. 2020 Apr 14; 9: 60.
[134]  Tianzhi, Yang, Xue Bai and et al. Invisible sensors: Simultaneous sensing and camouflaging in multiphysical fields, Advanced Materials, 2015, 27, 7752-7758.
[135]  YingLi, XueBai, TianzhiYang, Hailu Luo, Cheng-Wei Qiu, Structured thermal surface for radiative camouflage, Nat Commun, Jan 2018, 9(1): 273.
[136]  Maoxing Wen,Yueming Wang,Yi Yao, Liyin Yuan, Shiyao Zhou, Jianyu Wang, Design and performance of curved prism-based mid-wave infraredhyperspectral imager, Infrared Physics and Technology 95, 2018, 5-116.
[137]  Chiuhsiang Joe Lin, Yogi Tri Prasetyo, Nio Dolly Siswanto, Bernard C. Jiang, Optimization of color design for military camouflage in CIELAB color space, Color Res Appl. 2019, 44:367-380.
[138]  Burkinshaw SM, Hallas G and Towns AD. Infrared camouflage, Rev Prog Coloration 1996; 26: 47-53.
[139]  Colorimetry, 4TH Ed. CIE 015:2018: Vienna, October, 2018.
[140]  Dave and Patel, in “Liquid Crystals”, p. 363, P: 15, 56.
[141]  Timothy J. White, Michael E. Mc Conneya and Timothy J. Bunning, Dynamic color in stimuli-responsive cholesteric liquid crystals, J. Mater. Chem., 2010, 20, 9832-9847.
[142]  Wu, D. K. Y. S. T., Fundamentals of Liquid Crystal Devices. John Wiley & Sons, Lts: West Sussex, UK, 2015.
[143]  Volonakis, Timothy N.; Matthews, Olivia E.; Liggins, Eric; Baddeley, Roland J.; Scott-Samuel, Nicholas E.; Cuthill, Innes C. Camouflage assessment: Machine and human, Computers in Industry, Aug, 2018,
[144]  Chiuhsiang Joe, LinChi-Chan, ChangYung-Hui Lee, Evaluating camouflage design using eye movement data, Applied Ergonomics, 2014, 45, 714-723.
[145]  C. J. Lin, C-C. Chang & Y-H. Lee, Developing a similarity index for static camouflaged target detection, The Imaging Science Journal, 2014, 62: 6, 337-341.
[146]  Guidelines for Camouflage Assessment Using Observers, north atlantic treaty organisation, researchandtechnologyorganisation, file:///C:/Users/pc/Downloads/ronconi-2007-guidelines.pdf.
[147]  K. V. Patil, K. N. Pawar, Method for Improving Camouflage Image Quality using Texture Analysis, International Journal of Computer Applications, 2017.
[148]  Tom Troscianko, Christopher P. Benton, P. George Lovell, David J. Tolhurst and Zygmunt Pizlo, Camouflage and visual perception, Phil. Trans. R. Soc. B, 2009, 364, 449-461.
[149]  Thayer, G. H., Concealing-coloration in the animal kingdom an exposition of the laws of disguise through color and pattern: being a summary of Abbott H. Thayer’s discoveries, New York, UK: Macmillan, 1909.
[150]  Stuart-Fox, D. & Moussalli, A., Camouflage, communication and thermoregulation: lessons from colour changing organisms. Phil. Trans. R. Soc. B, 2009, 364, 463-470.
[151]  Stevens, M., Cuthill, I. C., Windsor, A. M. M. &Walker, H. J., Disruptive contrast in animal camouflage. Proc. R. Soc. B, 2006, 273, 2433-2438.
[152]  Stevens, M. & Merilaita, S., Animal camouflage: current issues and new perspectives. Phil. Trans. R. Soc.B, 2009a, 364, 423-427.
[153]  Hanlon, R. T. & Messenger, J. B. 1988, Adaptive coloration in young cuttlefish (Sepia officinalis L) the morphology and development of body patterns and their relation to behaviour. Phil. Trans. R. Soc. Lond.B320, 437-487.
[154]  Dean J. Campbell,Wayne A. Bosma, Stephen J. Bannon, Molly M. Gunter, and Margaret K. Hammar, Demonstration of Thermodynamics and Kinetics Using FriXion Erasable Pens, Journal of Chemical Education, 2006.
[155]  D. Aitken, S. M. Burkinshaw, J. Griffith and A. D. Towns, “Textile Applications of Thermochromic Systems”. Review Progress in Coloration, Vol. 26, 1996, pp. 1-8.
[156]  Fujita, K., Senga, K., Thermochromic microencapsulated pigments.United States Patent No. 6494950, 2002.
[157]  Shibahashi, Y., Nakasuji, N., Kataota, T., Inagaki, H., Kito, T., Thermochromic materials. United States Patent No. 4425161, 1984.
[158]  M. Amin and et al. Thermal properties of paraffin based nano-phase change material as thermal energy storage, IOP Conf. Series: Earth and Environmental Science 105 2018, pp 12-28.
[159]  B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K.-P. Förster, S. Hofer, T. Stuffler, H. Kaufmann, A. Müller, T. Eversberg, C. Chlebek, The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration, and technologies, Proc. SPIE 7086, 2008, 708605.
[160]  D. Krezhova, S. Maneva, N. Petrov, I. Moskova, K. Krezhov, Detection of environmental changes using hyperspectral remote sensing, AIP Conf. Proc. 1722, 2016, 270003.
[161]  B. Xue, C. Yu, Y. Wang, M. Song, S. Li, L. Wang, H.-M. Chen, C.-I. Chang, A subpixel target detection approach to hyperspectral image classification, IEEE Trans. Geosci. Remote Sensing, 2017, 55 (9), 5093-5114.
[162]  M. Hinnrichs, N. Gupta, A. Goldberg, Dual Band (MWIR/LWIR) hyperspectral imager, in: Proceedings of IEEE Conference on Applied Imagery Pattern Recognition Workshop IEEE, 2003, pp.73-78.
[163]  Neelam Gupta, Hyperspectral imager development at Army Research Laboratory, Proc. Of SPIE 2008, Vol. 6940 69401P-1.
[164]  Kyle Henry Conner, Methods for increasing a camouflaging effect and articles so produced, U.S Patent 5, 985, 381, 1999.
[165]  Yutaka Shibahashi, Norikazu Nakasuji, Takashi Kataoka, Hiroshi Inagaki, Tutomu KitoMasaharu Ozaki, Nobuaki Matunami, Naoya Ishimura, Katuyuki Fujita, Thermochromic textile material, U.S Patent 4,681,791, 1987.
[166]  Akkaynak, D., Siemann, L. A., Barbosa, A., & Mäthger, L. M., Changeable camouflage: How well can flounder resemble the colour and spatial scale of substrates in their natural habitats? Royal Society Open Science, 2017, 4, 160824.
[167]  Hultgren, K. M., & Mittelstaed, H., Color change in a marine isopod is adaptive in reducing predation. Current Zoology, 61, 739-748, 2015.
[168]  Edelaar, P., Banos-Villalba, A., Escudero, G., & Rodriguez-Bernal, C, Background colour matching increases with risk of predation in a colour-changing grasshopper. Behavioural Ecology, 2017, 28, 698-705.
[169]  Rosenholtz R., Texture perception. In The Oxford handbook of perceptual organization (ed. J Wagemans), Oxford, UK: Oxford University Press, 2015, pp. 167-188.
[170]  Akkaynak D, Treibitz T, Xiao B, Gürkan UA, Allen J, Demirci U, Hanlon RT, Use of commercial off-the-shelf digital cameras for scientific data acquisition and scene specific color calibration. J. Opt. Soc. Am A 31, 2014, 312-32.
[171]  Akbari H, Halig LV, Schuster DM, Osunkoya A, Master V, Nieh PT, Chen GZ, Fei B. Hyperspectral imaging and quantitative analysis for prostate cancer detection. J. Biomed. Opt. 2012, 17, 076005.
[172]  Fischer C, Kakoulli I., Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications.Stud. Conserv, 2006, 51(S1), 3-16.
[173]  Russell BJ, Dierssen HM, Use of hyperspectral imagery to assess cryptic color matching in Sargassum associated crabs. PLoS ONE 10, e0136260, 2015.
[174]  Cuthill IC, Stevens M, Windsor AMM, Walker HJ., The effects of pattern symmetry on the antipredator effectiveness of disruptive and background matching coloration. Behav. Ecol., 2006, 17, 828-832.
[175]  Merilaita S, Lind J., Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proc. R. Soc., 2015, B 272, 665-670.
[176]  Josef N, Amodio P, Fiorito G, Shashar N, Camouflaging in a complex environment—octopuses use specific features of their surroundings for background matching. PLoS ONE, 2012, 7: 37579.
[177]  Silbiger N and Munguia P, Carapace color change in Uca pugilator as a response to temperature, J Exp Mar Biol Ecol, 2008, 355: 41-46.
[178]  Stevens M, Rong CP, Todd PA, Colour change and camouflage in the horned ghost crab Ocypode ceratophthalmus. Biol J Linn Soc, 2013, 109: 257-270.
[179]  Troscianko J, Stevens M., Image Calibration and Analysis Toolbox—a free software suite for objectively measuring reflectance, colour, and pattern. Methods Ecol Evol, 2015.
[180]  Chiao CC, Wickiser JK, Allen JJ, Genter B, Hanlon RT, Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators. Proc Natl Acad Sci U S A., 2011, 108: 9148-9153.
[181]  Manolakis D, Marden D, Shaw GA, Hyperspectral image processing for automatic target detection applications. IEEE Signal Processing Magazine, 2003, 14: 79-116.
[182]  Pinto F, Mielewczik M, Liebisch F, Walter A, Greven H, Rascher U, Non-invasive measurement of frog skin reflectivity in high spatial resolution using a dual hyperspectral approach. PLoS ONE, 2013, 8(9), 73234.
[183]  G.Gauglitz and T. Vo-Dinh, Handbook of Spectroscopy, 2003, P: 78, 79, 80, 83.
[184]  C, J.Y., Schmitt, F., and Brettel, H., ‘Multispectral color image capture using a liquid crystal tunable filter’, Optical Engineering, 2002, 41(10), 2532-2548.
[185]  Hamilton, S.J., Lowell, A.E., and Lodder, R.A., Hyperspectral techniques in analysis of oral dosage forms, Journal of Biomedical Optics, 2002, 7(4), 561-570.
[186]  Aikio, M., Hyperspectral Prism-Grating-Prism Imaging Spectrograph, PhD thesis, University of Oulu, 2001.
[187]  Ribés Cortés, A., Multispectral Analysis and Spectral Reflectance Reconstruction of Art Paintings, PhD thesis, École Nationale Supérieure des Télécommunications, Paris, 2003.
[188]  Geladi, P., Burger, J., and Lestander, T., ‘Hyperspectral imaging: calibration problems and solutions’, Chemometrics and Intelligent Laboratory Systems, 2004, 72, 209-217.
[189]  Chang, C.C., Lee, Y.H., Lin, C.J., Liu, B.S., Shih, Y.C., 2012, Visual assessment of camouflaged targets with different background similarities. Percept. Mot. Skill, 2012,114, 527-541.
[190]  Muksit Ahamed Chowdhury, Bhupendra Butola, Mangala Joshi, Development of Responsive Camouflage Textile using Thermochromic and Non-thermochromic Colorants, January 2013, Development of Responsive Camouflage Textile, A project of IIT, Delhi, India. Available at
[191]  D. Manolakis, C. Siracusa, and G. Shaw, Hyperspectral Subpixel Target Detection Using the Linear Mixing Model, IEEE Trans. Geosci. Remote Sens. 39 (7), 2001, pp. 1392-1409.
[192]  MacLaren, D. C. & White, M. A. Design rules for reversible thermochromic mixtures. J. Mater. Sci., 2005, 40, 669-676.
[193]  Borque, A. N. & White, M. A. Control of thermochromic behaviour in crystal violet lactone (CVL)/alkyl gallate/alcohol ternary mixtures. Can. J. Chem., 2015, 93, 22-31.
[194]  Sten, N. and Lars, B. Assessing camouflage using textural features, Proc. SPIE, 2001, 4370, 60-71.
[195]  Bhajantri, N. U. and Nagabhushan, P. Camouflage defect identification: a novel approach. Proc. 9th Int. Conf. on Information technology, Bhubaneswar, India, December 2006, pp.145-148.
[196]  Muller, T. and Muller, M. Computer-aided camouflage assessment in real-time. Proc. SPIE, 2007, 6543, 701-711.
[197]  Nadia Abdullah; Abd. Rahim Abu Talib; Abdul Aziz Jaafar; Mohamad Amran Mohd Salleh; Wen Tong Chong, The basics and issues of Thermochromic Liquid Crystal Calibrations, Experimental Thermal and Fluid Science, Volume 34, Issue 8, November 2010, P: 1089-1121.
[198]  Merilaita, S., Scott-Samuel, N. E., and Cuthill, I. C., How camouflage works. Philosophical Transactions of the Royal Society, 2017, B 372:20160341.
[199]  Ruxton GD, Speed MP, Kelly DJ., What, if anything, is the adaptive function of countershading? Anim. Behav. 68, 445-451, 2004.
[200]  Abra`moff MD, Magalha¨es PJ, Ram SJ., Image processing with Image J. Biophoton Int, 2004, 7:36-43.
[201]  Michael R. Carter, Charles L. Bennett, David J. Fields, F. Dean Lee, “Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS),” Proc. SPIE 2480, Imaging Spectrometry, June 1995.