[1] | Shamsi, R., Ghassemi, H., Determining the hydrodynamic loads of the marine propeller forces in oblique flow and off-design condition. Iran. J. Sci. Technol. Trans. Mech. Eng. 41, 2017, pp121-127. |
|
[2] | Shamsi, R., Ghassemi, H., Numerical investigation on yaw angle effects on propulsive characteristics of podded propulsions. Int. J. Nav. Archit. Ocean Eng. 5, 2013, 287-301. |
|
[3] | Shamsi R., Ghassemi H., Iranmanesh M., A Comparison of the BEM and RANS Calculations for the hydrodynamic performance of the PODS, Mechanics & Industry 18, 205, 2017. |
|
[4] | Viviani M, Podenzana Bonvino C, Mauro S, Cerruti M, Guadalupi D, Menna A., Analysis of asymmetrical shaft power increase during tight manoeuvre. In: 9th Int. conf. on high performance marine vehicles, Shangai, China, 2007. |
|
[5] | Chang, P., Elbert, M., Young, Y., Liu, Z., Mahesh, K., Jang, H., Propeller forces and structural response due to crashback. In: Proc. of 27th Symp. on Naval Hydrodynamic, Seoul, Korea, 2008. |
|
[6] | Atsavapranee P, Miller R, Day C, Klamo J, Fry D., Steady-turning experiments and RANS simulations on a surface combatant hull form (Model#5617). In: Proc. of 28th Symp. on naval hydrodynamics, Pasadena, California, 2010. |
|
[7] | Dubbioso, G., Muscari, R., Mascio, A.D., Analysis of the performance of a marine propeller operating in oblique flow, Comput. Fluid 75, 2013, 86-102. |
|
[8] | Dubbioso, G., Muscari, R., Mascio, A.D., Analysis of a marine propeller operating in oblique flow. Part 2: very high incidence angles. Comput. Fluid 92, 2014, 56-81. |
|
[9] | Shuai, R., Liang, L., Chao, W., Hongyu, Z., Numerical prediction analysis of propeller exciting force for hull-propeller-rudder system in oblique flow. Int. J. Nav. Archit. Ocean Eng. 10, 2018, 69-84. |
|
[10] | Wang, Chao, Sun, Shuai, Li, Liang, Ye, Liyu, Numerical prediction analysis of propeller bearing force for full-scale hull-propeller-rudder system. Int. J. Nav. Archit. Ocean Eng. 8, 2016, 589-601. |
|
[11] | Nowruzi, H., Ghassemi, H. and Ghiasi, M., 2017. Performance predicting of 2D and 3D submerged hydrofoils using CFD and ANNs. Journal of Marine Science and Technology, 22(4), pp.710-733. |
|
[12] | Shora, M.M., Ghassemi, H. and Nowruzi, H., 2017. Using computational fluid dynamic and artificial neural networks to predict the performance and cavitation volume of a propeller under different geometrical and physical characteristics. Journal of Marine Engineering & Technology, pp.1-26. |
|
[13] | Najafi, A., Nowruzi, H. and Ghassemi, H., 2018. Performance prediction of hydrofoil-supported catamarans using experiment and ANNs. Applied Ocean Research, 75, pp.66-84. |
|