American Journal of Marine Science
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: https://www.sciepub.com/journal/marine Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Marine Science. 2013, 1(1), 22-27
DOI: 10.12691/marine-1-1-4
Open AccessArticle

Trophic Position of Two Mysid Species (Crustacea: Mysidacea) in an Estuarine Ecosystem in Auckland, New Zealand, Using Stable Isotopic Analysis

N.N. Punchihewa1, and S.R. Krishnarajah1

1Department of Zoology, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka

Pub. Date: October 23, 2013

Cite this paper:
N.N. Punchihewa and S.R. Krishnarajah. Trophic Position of Two Mysid Species (Crustacea: Mysidacea) in an Estuarine Ecosystem in Auckland, New Zealand, Using Stable Isotopic Analysis. American Journal of Marine Science. 2013; 1(1):22-27. doi: 10.12691/marine-1-1-4

Abstract

The trophic position of an organism can be determined by the stable isotope studies of nitrogen and carbon. The main objective of this study was to determine the trophic position of two mysid species, Tenagomysis chiltoni and T. novaezealandiae in the Kakamatua stream ecosystem in using 13C and 15N isotopes. Samples were collected during two weeks period in late December 2008 and early January 2009 including primary producers, leaf litter, aquatic invertebrates, fish species and sediment samples. Aquatic invertebrates and fish were collected from the stream using a hand net. Litter samples were collected randomly from the stream floor. Samples were sealed in plastic bags, and stored in a freezer until processing. All the samples were oven-dried, then ground to obtain a homogeneous powder. Three replicates of each sample were prepared. Samples were processed by the Waikato Stable Isotope Unit, of , . A trophic-level effect of 13C and 15N enrichment was clearly observed. Stable isotopic data indicated that T. chiltoni and T. novaezealandiae exhibited variety of feeding habits (feeding on the first and the second trophic levels) and can be considered as omnivores. Among the other invertebrates analysed, mysids seem to be an important invertebrate fauna which are capable of energy transferring towards the higher trophic level both from primary food sources and the secondary consumers as well. Differences in the isotopic composition were observed among same species depending upon the ontogenetic development.

Keywords:
nitrogen isotope carbon isotopeformat food web analysis estuary New Zealand

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Peterson, B. J., Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecological Systems, 18, 293-320.
 
[2]  Johansson, O. E., Leggett, M. F., Rudstam, L. G., Servos, M. R., Mohammadian, M. L., Gal, G., et al. (2001). Diet of Mysis relicta in Lake Ontario as revealed by stable isotope and gut content analysis. Canadian Journal of Fishery and Aquatic Sciences, 58, 1975-1986.
 
[3]  Mauchline, J. (1980). The biology of mysids and euphausids. In J. H. S. Blaxter, Russell, F. S., Yonge, M (Ed.), Advances in marine biology (Vol. 18, pp. 3-369).
 
[4]  Minagawa, M., Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta, 48, 1135-1140.
 
[5]  Post, D. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83, 703-718.
 
[6]  Toda, H., Wada, E. (1990). Use of 15N/14N rations to evaluate the food source of the mysid, Neomysis intermedia Czerniawsky, in a eutrophic lake in Japan. Hydrobiologia, 194, 85-90.
 
[7]  Hansson, S. H., J. E Elmgren, R. Larsson, U. Fry B. Johansson, S. (1997). The stable nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology 78, 2249-2257.
 
[8]  Gorokhova, E., & Hansson, S. (1999). An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mite and Neomysis integer. Canadian Journal of Fishery and Aquatic Sciences, 56, 2203-2210.
 
[9]  Branstrator, D. K., Cabana, G., Mazumder A., Rasmussen, J.B. (2000). Measuring Life-history omnivory in the opossum shrimp, Mysid relicta, with stable nitrogen isotopes Limnology and Oceanography, 45, 463-467.
 
[10]  DeNiro, M. J., & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42, 495-506.
 
[11]  DeNiro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 42, 495-506.
 
[12]  Mulkins, L. M., Jelinski, D. E., Karagatzides. J. D., & Car, R A. (2002). Carbon isotope composition of mysids at a terrestrial-marine ecotone, Clayoquot Sound, British Columbia, Canada. Estuarine, Coastal and Shelf Science, 54 (4), 669-675.
 
[13]  Lesutienė, J., Gorokhova, E., Gasiunaite, Z. R., & Razinkovas, A. (2007). Isotopic evidence for zooplankton as an important food source for the mysid Paramysis lacustris in the Curonian Lagoon, the south-east ern Baltic Sea. Estuarine, Coastal and Shelf Science, 73 (1-2), 73-80.
 
[14]  Lehtiniemi, M., Kiljunen, M., & Jones, R. I. (2009). Winter food utilisation by sympatric mysids in the Baltic Sea, studied by combined gut content and stable isotope analyses. Marine Biology, 156, 619-628.
 
[15]  Hicks, B. J. (1997). Food webs in forest and pasture streams in the Waikato region: a study based on analyses of stable isotopes of carbon and nitrogen, and fish gut contents. New Zealand Journal of Marine and Freshwater Research, 31, 651-664.
 
[16]  Rounick, J. S., Winterbourn, M. J., Lyon, G. L. (1982). Differential utilisation of allochthonous and autochthonous inputs by aquatic invertebrates in some New Zealand streams: a stable carbon isotope study Oikos, 39, 191-198.
 
[17]  Alfaro, A. C., Thomas, F., Sergent, L., Duxbury, M. (2006). Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuarine, Coastal and Shelf Science, 70, 271-286.
 
[18]  Waite, R. P. (1980). Food resource utilization by Tenagomysis chiltoni (Crustacea: Mysidacea). MSc. Thesis, University of Canterbury. 155pp.
 
[19]  Branstrator, D. K., Cabana, G., Mazumder A., & Rasmussen, J. B. (2000). Measuring life history omnivory in the opossum shrimp, Mysis relicta, with stable nitrogen isotopes. Limnology and Oceanography, 45, 463-467.
 
[20]  Viherluoto, M., Kuosa, H., Flinkman, J., & Viitasalo, M. (2000). Food utilisation of pelagic mysids, Mysis mixta and M. relicta, during their growing season in the northern Baltic Sea. Marine Biology, 136, 553-559.
 
[21]  Viherluoto, M., & Viitasalo, M. (2001). Temporal variability in functional responses and prey selectivity of the pelagic mysid, Mysis mixta, in natural prey assemblages. Marine Biology, 138, 575-583.
 
[22]  Kelly, D. J., Jellyman, D. J. (2007). Changes in trophic linkages to shortfin eels (Anguilla australis) since the collapse of submerged macrophytes in Lake Ellesmere, New Zealand Hydrobiologia, 579, 161-173.
 
[23]  James, G. D., & Unwin, M. J. (1996). Diet of Chinook salmon (Oncorhynchus tshawytscha) in Canterbury coastal waters, New Zealand. New Zealand Journal of Marine and Freshwater Research, 30, 69-78.
 
[24]  Ryan, P. A. (1986). Seasonal and size-related changes in the food of the short-finned eel, Anguilla australis in Lake Ellesmere, Canterbury, New Zealand. Enviromental biology of fishes, 15(1), 47-58.
 
[25]  Webb, B. F. (1973). Fish populations of the Avon-Heathcote Estuary. 3. Gut contents. New Zealand Journal of Marine and Freshwater Research, 7, 223-234.
 
[26]  Redon, M. J., Morte, M. S., Sanz-Brau, A. (1994). Feeding habits of the spotted flounder Citharus linguatula off the eastern coast of Spain. Marine Biology, 120, 197-201.
 
[27]  Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide Geochemica Cosmochimica Acta, 12, 181-186.
 
[28]  Mariotti, A. (1983). Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature, 303, 685-687.