Journal of Polymer and Biopolymer Physics Chemistry
ISSN (Print): 2373-3403 ISSN (Online): 2373-3411 Website: https://www.sciepub.com/journal/jpbpc Editor-in-chief: Martin Alberto Masuelli
Open Access
Journal Browser
Go
Journal of Polymer and Biopolymer Physics Chemistry. 2018, 6(1), 13-25
DOI: 10.12691/jpbpc-6-1-2
Open AccessReview Article

Intrinsic Viscosity Determination of High Molecular Weight Biopolymers by Different Plot Methods. Chia Gum Case

Martin A. Masuelli1,

1Laboratorio de Investigación y Servicios de Química Física (LISeQF-UNSL). Instituto de Física Aplicada-CONICET y FQByF-Universidad Nacional de San Luis, Ejercito de los Andes 950, ZC: 5700, San Luis, Argentina

Pub. Date: October 08, 2018

Cite this paper:
Martin A. Masuelli. Intrinsic Viscosity Determination of High Molecular Weight Biopolymers by Different Plot Methods. Chia Gum Case. Journal of Polymer and Biopolymer Physics Chemistry. 2018; 6(1):13-25. doi: 10.12691/jpbpc-6-1-2

Abstract

The chia (Salvia hispanica) generates an abundant and viscous mucilage, this is purified with periods of heating-cooling and finally precipitated with ethanol, obtaining chia gum, CG. In this work the intrinsic viscosity is determined by different methods being Huggins taken as standard. The different methods are compared and evaluated with their respective percentage relative errors. By means of intrinsic viscosity is determined the molecular weight with a value of 3846000g/mol. This polysaccharide acquires a rod-like conformation with an "a" value, Mark-Houwink parameter, of 0.803 according to Int. J. Biological Macromol. 81 (2015) 991-999. This macromolecule is very promising and has a potential in several industrial applications such as film forming, gel, thickener, and coemulsifier.

Keywords:
chia gum intrinsic viscosity molecular weight

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  CONABIO. 2009. Catálogo taxonómico de especies de México. 1. In Capital Nat. México. CONABIO, México City, México.
 
[2]  Pool, A. 2007. Lamiaceae. In: Manual de Plantas de Costa Rica. Vol. 6. B.E. Hammel, M.H. Grayum, C. Herrera & N. Zamora (eds.). Monogr. Syst. Bot. Missouri Bot. Gard. 111: 49-89.
 
[3]  Lin, K. Y., Daniel, J. R., & Whistler, R. L. (1994). Structure of chia seed polysaccharide exudate. Carbohydrate Polymers, 23(1), 13-18.
 
[4]  Campos, B. E., Ruivo, T. D., da Silva Scapim, M. R., Madrona, G. S., & Bergamasco, R. D. C. (2016). Optimization of the mucilage extraction process from chia seeds and application in ice cream as a stabilizer and emulsifier. LWT-Food Science and Technology, 65, 874-883.
 
[5]  de la Paz Salgado-Cruz, M., Calderón-Domínguez, G., Chanona-Pérez, J., Farrera-Rebollo, R. R., Méndez-Méndez, J. V., & Díaz-Ramírez, M. (2013). Chia (Salvia hispanica L.) seed mucilage release characterisation. A microstructural and image analysis study. Industrial crops and products, 51, 453-462.
 
[6]  Capitani, M. I., Corzo-Rios, L. J., Chel-Guerrero, L. A., Betancur-Ancona, D. A., Nolasco, S. M., & Tomás, M. C. (2015). Rheological properties of aqueous dispersions of chia (Salvia hispanica L.) mucilage. Journal of food engineering, 149, 70-77.
 
[7]  Timilsena, Y. P., Adhikari, R., Kasapis, S., & Adhikari, B. (2015). Rheological and microstructural properties of the chia seed polysaccharide. International journal of biological macromolecules, 81, 991-999.
 
[8]  Timilsena, Y. P., Adhikari, R., Kasapis, S., & Adhikari, B. (2016). Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydrate polymers, 136, 128-136.
 
[9]  Capitani, M. I., Spotorno, V., Nolasco, S. M., & Tomás, M. C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT-Food Science and Technology, 45(1), 94-102.
 
[10]  Muñoz, L. A., Cobos, A., Diaz, O., & Aguilera, J. M. (2012). Chia seeds: Microstructure, mucilage extraction and hydration. Journal of food Engineering, 108(1), 216-224.
 
[11]  Segura-Campos, M. R., Ciau-Solís, N., Rosado-Rubio, G., Chel-Guerrero, L., & Betancur-Ancona, D. (2014). Chemical and functional properties of chia seed (Salvia hispanica L.) gum. International journal of food science, 2014.
 
[12]  Goh, K. K. T., Matia-Merino, L., Chiang, J. H., Quek, R., Soh, S. J. B., & Lentle, R. G. (2016). The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology. Carbohydrate polymers, 149, 297-307.
 
[13]  Coorey, R., Tjoe, A., & Jayasena, V. (2014). Gelling properties of chia seed and flour. Journal of food science, 79(5), E859-E866.
 
[14]  Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., de Oliveira Rios, A., & Flôres, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198-205.
 
[15]  Huggins, M. L. 1942. The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J. Am. Chem. Soc., 64, 11, 2716-2718.
 
[16]  Kraemer, E. O. 1938. Molecular weights of celluloses and cellulose derivates. Ind. Eng. Chem., vol. 30, pp. 1200-1204.
 
[17]  Martin, A. F. 1942. Abstr. 103rd Am. Chem. Soc. Meeting, p. 1-c ACS.
 
[18]  Fuoss, R. M. 1948. Viscosity function for polyelectrolytes. J. Polymer Sci., vol. 3, pp. 603-604.
 
[19]  Fuoss, R. M. 1949. Errata: Viscosity function for polyelectrolytes. (J. Polymer Sci. 3 (1948) 603-604). J. Polymer Sci. vol. 4, pp. 96-96.
 
[20]  Fedors, R. F. 1979. An equation suitable for describing the viscosity of dilute to moderately concentrated polymer solutions. Polymer, vol. 20, pp. 225-228.
 
[21]  Heller, W. 1954. Treatment of Viscosity Data on Polymer Solutions (an Analysis of Equations and Procedures). I. Intrinsic Viscosity and Limiting Slope Constants. Journal of Colloid Science 9, 6, 547-573.
 
[22]  Lyons, P. F., Tobolsky, A. V. 1970. Viscosity of Polypropylene Oxide Solutions over the Entire Concentration Range. Polymer Engineering and Science, January, 70, 1, 1-3.
 
[23]  Quadrat, O. 1977. Dependence of viscosity on the concentration of polymer solutions. Use of the Lyons-Tobolsky equation. Collect. Czech. Chem. Commun. 42, 1520-1528.
 
[24]  Baker, F. 1913. The Viscosity of Cellulose Nitrate Solutions. Journal of The Chemical Society 103, 1653-1675.
 
[25]  Lewandowska, K., Staszewska, D. U., & Bohdanecký, M. (2001). The Huggins viscosity coefficient of aqueous solution of poly (vinyl alcohol). European polymer journal, 37(1), 25-32.
 
[26]  Tager, A. 1978. in: The Physical Chemistry of Polymers, third ed. [in Russian], Khimiya, Moscow p. 544.
 
[27]  Budtov, V. P. 1976. Generalized concentration dependence of the viscosity of concentrated polymer solutions. Polymer Mechanics, 12, 1, 151-154. Translated from Mekhanika Polimerov, 1, 172-175, 1974.
 
[28]  Solomon, O. F., Gotesman, B. S. 1967. Calculation of viscosity number from a single measurement. Makromolek. Chem. 104, 177.
 
[29]  Lai, L. S., & Liang, H. Y. (2012). Chemical compositions and some physical properties of the water and alkali-extracted mucilage from the young fronds of Asplenium australasicum (J. Sm.) Hook. Food hydrocolloids, 26(2), 344-349.
 
[30]  Beer, M. U., Wood, P. J., & Weisz, J. (1999). A simple and rapid method for evaluation of Mark-Houwink-Sakurada constants of linear random coil polysaccharides using molecular weight and intrinsic viscosity determined by high performance size exclusion chromatography: application to guar galactomannan. Carbohydrate Polymers, 39(4), 377-380.
 
[31]  Hoffmann, M. 1957. Über die Konzentrationsabhängigkeit der Viskosität von Lösungen unverzweigter und verzweigter Fadenmoleküle. 1. Mitteilung. Die Konzentrationsabhängigkeit der Viskösität von Lösungen unverzweigter Fadenmoleküle. Makromol. Chem, 24, 1, 222-244.
 
[32]  Arrhenius, S. F. 1887. Z. Physik. Chem. 1 285; Medd. Vetensk. Nobel Institut 3 (1916) 13; Biochem. J. 11 (1917) 112.
 
[33]  Sakai, T. 1968. Huggins constant k′ for flexible chain polymers. Journal of Polymer Science Part A‐2: Polymer Physics, 6, 1535-1549.
 
[34]  Sakai, T. 1968. Extrapolation Procedures for Intrinsic Viscosity and for Huggins Constant k'. Journal of Polymer Science: Part A-2: 6, 1659-1672.
 
[35]  Kreisa, J. 1960. J. Colloid. Czechosl. Chem. Commun. 25, 1507.
 
[36]  H. Staudinger and W. Heuer. 1934. Über hochpolymere Verbindungen. Z. Physik. Chem., 171 A, 129-180.
 
[37]  Schramek, W. 1955. Über eine neue viskositätsfunktion von weitem gültigkeitsbereich. II. Mitteilung über den physikalischen zustand und das physikalisch‐chemische verhalten hochmolekularer stoffe. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 17, 1, 19-28.
 
[38]  Maron, S. H., & Reznik, R. B. (1969). A new method for determination of intrinsic viscosity. Journal of Polymer Science Part A‐2: Polymer Physics, 7(2), 309-324.
 
[39]  Mark, H. 1938. in Der feste Körper (ed. Sänger, R.), 65-104 (Hirzel, Leipzig).
 
[40]  Houwink, R. 1940. Zusammenhang zwischen viscosimetrisch und osmotisch bestimm- ten polymerisationsgraden bei hochpolymeren. J. Prakt. Chem., 157, 15.
 
[41]  Masuelli, M. A., Takara, A., Acosta A. 2013. Hydrodynamic properties of tragacanthin. Study of temperature influence. J. Arg. Chem. Soc., 100, 25-34.
 
[42]  Masuelli, M. A. 2014. Mark-Houwink parameters for aqueous-soluble polymers and biopolymers at various temperatures. J. Pol. Biopol. Phys. Chem., 2, 2, 37-43.
 
[43]  Masuelli, M. A. 2011. Viscometric study of pectin. Effect of temperature on the hydrodynamic properties. Int. J. Biol. Macromol., 48, 286-29.
 
[44]  Masuelli, M. A. & Sansone, M. G. 2012. Hydrodynamic properties of Gelatine. Studies from intrinsic viscosity measurements. Chapter 5, pp. 85-116. Book: Products and Applications of Biopolymers. Editor C. J. R. Verbeek, ISBN 978-953-51-0226-7. INTECH, Croatia.
 
[45]  Masuelli, M. A. 2013. Hydrodynamic Properties of Whole Arabic Gum. American Journal of Food Science and Technology, 1, 3, 60-66.
 
[46]  Harding, S. E. 1997. The Viscosity Intrinsic of Biological Macromolecules. Progress in Measurement, Interpretation and Application to Structure in Dilute Solution. Progress in Biophysical Molecules Biological, 68, 207-262.
 
[47]  Curvale, R., Masuelli, M., Perez Padilla, A. 2008. Intrinsic viscosity of bovine serum albumin conformers. International Journal of Biological Macromolecules, 42, 133-137.
 
[48]  Masuelli, M. A. 2013, Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements. Advances in Physical Chemistry, vol. 2013, Article ID 360239, 8 pages, Hindawi Publishing Corporation.
 
[49]  Roven'kova, T. A., Babushkina, M. P., Koretskaya, A. I., Gorchakova, I. A., Kudryavtsev, G. I. 1984. Analysis of Generalized Dependences of the Viscosity of Dilute Polymer Solutions. Polymer Science U.S.S.R. 26, 3, 8, 1971-1979.
 
[50]  Roven'kova, T. A., Babushkina, M. P., Koretskaya, A. I., Zhuravlev, L. V., Kudryavtsev, G. I. 1985. A Mathematical Model of the Viscosity of Dilute Solutions of Rigid-Chain Polymers. Translated from Khimicheskie Volokna, 2, 20-24.