[1] | CONABIO. 2009. Catálogo taxonómico de especies de México. 1. In Capital Nat. México. CONABIO, México City, México. |
|
[2] | Pool, A. 2007. Lamiaceae. In: Manual de Plantas de Costa Rica. Vol. 6. B.E. Hammel, M.H. Grayum, C. Herrera & N. Zamora (eds.). Monogr. Syst. Bot. Missouri Bot. Gard. 111: 49-89. |
|
[3] | Lin, K. Y., Daniel, J. R., & Whistler, R. L. (1994). Structure of chia seed polysaccharide exudate. Carbohydrate Polymers, 23(1), 13-18. |
|
[4] | Campos, B. E., Ruivo, T. D., da Silva Scapim, M. R., Madrona, G. S., & Bergamasco, R. D. C. (2016). Optimization of the mucilage extraction process from chia seeds and application in ice cream as a stabilizer and emulsifier. LWT-Food Science and Technology, 65, 874-883. |
|
[5] | de la Paz Salgado-Cruz, M., Calderón-Domínguez, G., Chanona-Pérez, J., Farrera-Rebollo, R. R., Méndez-Méndez, J. V., & Díaz-Ramírez, M. (2013). Chia (Salvia hispanica L.) seed mucilage release characterisation. A microstructural and image analysis study. Industrial crops and products, 51, 453-462. |
|
[6] | Capitani, M. I., Corzo-Rios, L. J., Chel-Guerrero, L. A., Betancur-Ancona, D. A., Nolasco, S. M., & Tomás, M. C. (2015). Rheological properties of aqueous dispersions of chia (Salvia hispanica L.) mucilage. Journal of food engineering, 149, 70-77. |
|
[7] | Timilsena, Y. P., Adhikari, R., Kasapis, S., & Adhikari, B. (2015). Rheological and microstructural properties of the chia seed polysaccharide. International journal of biological macromolecules, 81, 991-999. |
|
[8] | Timilsena, Y. P., Adhikari, R., Kasapis, S., & Adhikari, B. (2016). Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydrate polymers, 136, 128-136. |
|
[9] | Capitani, M. I., Spotorno, V., Nolasco, S. M., & Tomás, M. C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT-Food Science and Technology, 45(1), 94-102. |
|
[10] | Muñoz, L. A., Cobos, A., Diaz, O., & Aguilera, J. M. (2012). Chia seeds: Microstructure, mucilage extraction and hydration. Journal of food Engineering, 108(1), 216-224. |
|
[11] | Segura-Campos, M. R., Ciau-Solís, N., Rosado-Rubio, G., Chel-Guerrero, L., & Betancur-Ancona, D. (2014). Chemical and functional properties of chia seed (Salvia hispanica L.) gum. International journal of food science, 2014. |
|
[12] | Goh, K. K. T., Matia-Merino, L., Chiang, J. H., Quek, R., Soh, S. J. B., & Lentle, R. G. (2016). The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology. Carbohydrate polymers, 149, 297-307. |
|
[13] | Coorey, R., Tjoe, A., & Jayasena, V. (2014). Gelling properties of chia seed and flour. Journal of food science, 79(5), E859-E866. |
|
[14] | Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., de Oliveira Rios, A., & Flôres, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198-205. |
|
[15] | Huggins, M. L. 1942. The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J. Am. Chem. Soc., 64, 11, 2716-2718. |
|
[16] | Kraemer, E. O. 1938. Molecular weights of celluloses and cellulose derivates. Ind. Eng. Chem., vol. 30, pp. 1200-1204. |
|
[17] | Martin, A. F. 1942. Abstr. 103rd Am. Chem. Soc. Meeting, p. 1-c ACS. |
|
[18] | Fuoss, R. M. 1948. Viscosity function for polyelectrolytes. J. Polymer Sci., vol. 3, pp. 603-604. |
|
[19] | Fuoss, R. M. 1949. Errata: Viscosity function for polyelectrolytes. (J. Polymer Sci. 3 (1948) 603-604). J. Polymer Sci. vol. 4, pp. 96-96. |
|
[20] | Fedors, R. F. 1979. An equation suitable for describing the viscosity of dilute to moderately concentrated polymer solutions. Polymer, vol. 20, pp. 225-228. |
|
[21] | Heller, W. 1954. Treatment of Viscosity Data on Polymer Solutions (an Analysis of Equations and Procedures). I. Intrinsic Viscosity and Limiting Slope Constants. Journal of Colloid Science 9, 6, 547-573. |
|
[22] | Lyons, P. F., Tobolsky, A. V. 1970. Viscosity of Polypropylene Oxide Solutions over the Entire Concentration Range. Polymer Engineering and Science, January, 70, 1, 1-3. |
|
[23] | Quadrat, O. 1977. Dependence of viscosity on the concentration of polymer solutions. Use of the Lyons-Tobolsky equation. Collect. Czech. Chem. Commun. 42, 1520-1528. |
|
[24] | Baker, F. 1913. The Viscosity of Cellulose Nitrate Solutions. Journal of The Chemical Society 103, 1653-1675. |
|
[25] | Lewandowska, K., Staszewska, D. U., & Bohdanecký, M. (2001). The Huggins viscosity coefficient of aqueous solution of poly (vinyl alcohol). European polymer journal, 37(1), 25-32. |
|
[26] | Tager, A. 1978. in: The Physical Chemistry of Polymers, third ed. [in Russian], Khimiya, Moscow p. 544. |
|
[27] | Budtov, V. P. 1976. Generalized concentration dependence of the viscosity of concentrated polymer solutions. Polymer Mechanics, 12, 1, 151-154. Translated from Mekhanika Polimerov, 1, 172-175, 1974. |
|
[28] | Solomon, O. F., Gotesman, B. S. 1967. Calculation of viscosity number from a single measurement. Makromolek. Chem. 104, 177. |
|
[29] | Lai, L. S., & Liang, H. Y. (2012). Chemical compositions and some physical properties of the water and alkali-extracted mucilage from the young fronds of Asplenium australasicum (J. Sm.) Hook. Food hydrocolloids, 26(2), 344-349. |
|
[30] | Beer, M. U., Wood, P. J., & Weisz, J. (1999). A simple and rapid method for evaluation of Mark-Houwink-Sakurada constants of linear random coil polysaccharides using molecular weight and intrinsic viscosity determined by high performance size exclusion chromatography: application to guar galactomannan. Carbohydrate Polymers, 39(4), 377-380. |
|
[31] | Hoffmann, M. 1957. Über die Konzentrationsabhängigkeit der Viskosität von Lösungen unverzweigter und verzweigter Fadenmoleküle. 1. Mitteilung. Die Konzentrationsabhängigkeit der Viskösität von Lösungen unverzweigter Fadenmoleküle. Makromol. Chem, 24, 1, 222-244. |
|
[32] | Arrhenius, S. F. 1887. Z. Physik. Chem. 1 285; Medd. Vetensk. Nobel Institut 3 (1916) 13; Biochem. J. 11 (1917) 112. |
|
[33] | Sakai, T. 1968. Huggins constant k′ for flexible chain polymers. Journal of Polymer Science Part A‐2: Polymer Physics, 6, 1535-1549. |
|
[34] | Sakai, T. 1968. Extrapolation Procedures for Intrinsic Viscosity and for Huggins Constant k'. Journal of Polymer Science: Part A-2: 6, 1659-1672. |
|
[35] | Kreisa, J. 1960. J. Colloid. Czechosl. Chem. Commun. 25, 1507. |
|
[36] | H. Staudinger and W. Heuer. 1934. Über hochpolymere Verbindungen. Z. Physik. Chem., 171 A, 129-180. |
|
[37] | Schramek, W. 1955. Über eine neue viskositätsfunktion von weitem gültigkeitsbereich. II. Mitteilung über den physikalischen zustand und das physikalisch‐chemische verhalten hochmolekularer stoffe. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 17, 1, 19-28. |
|
[38] | Maron, S. H., & Reznik, R. B. (1969). A new method for determination of intrinsic viscosity. Journal of Polymer Science Part A‐2: Polymer Physics, 7(2), 309-324. |
|
[39] | Mark, H. 1938. in Der feste Körper (ed. Sänger, R.), 65-104 (Hirzel, Leipzig). |
|
[40] | Houwink, R. 1940. Zusammenhang zwischen viscosimetrisch und osmotisch bestimm- ten polymerisationsgraden bei hochpolymeren. J. Prakt. Chem., 157, 15. |
|
[41] | Masuelli, M. A., Takara, A., Acosta A. 2013. Hydrodynamic properties of tragacanthin. Study of temperature influence. J. Arg. Chem. Soc., 100, 25-34. |
|
[42] | Masuelli, M. A. 2014. Mark-Houwink parameters for aqueous-soluble polymers and biopolymers at various temperatures. J. Pol. Biopol. Phys. Chem., 2, 2, 37-43. |
|
[43] | Masuelli, M. A. 2011. Viscometric study of pectin. Effect of temperature on the hydrodynamic properties. Int. J. Biol. Macromol., 48, 286-29. |
|
[44] | Masuelli, M. A. & Sansone, M. G. 2012. Hydrodynamic properties of Gelatine. Studies from intrinsic viscosity measurements. Chapter 5, pp. 85-116. Book: Products and Applications of Biopolymers. Editor C. J. R. Verbeek, ISBN 978-953-51-0226-7. INTECH, Croatia. |
|
[45] | Masuelli, M. A. 2013. Hydrodynamic Properties of Whole Arabic Gum. American Journal of Food Science and Technology, 1, 3, 60-66. |
|
[46] | Harding, S. E. 1997. The Viscosity Intrinsic of Biological Macromolecules. Progress in Measurement, Interpretation and Application to Structure in Dilute Solution. Progress in Biophysical Molecules Biological, 68, 207-262. |
|
[47] | Curvale, R., Masuelli, M., Perez Padilla, A. 2008. Intrinsic viscosity of bovine serum albumin conformers. International Journal of Biological Macromolecules, 42, 133-137. |
|
[48] | Masuelli, M. A. 2013, Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements. Advances in Physical Chemistry, vol. 2013, Article ID 360239, 8 pages, Hindawi Publishing Corporation. |
|
[49] | Roven'kova, T. A., Babushkina, M. P., Koretskaya, A. I., Gorchakova, I. A., Kudryavtsev, G. I. 1984. Analysis of Generalized Dependences of the Viscosity of Dilute Polymer Solutions. Polymer Science U.S.S.R. 26, 3, 8, 1971-1979. |
|
[50] | Roven'kova, T. A., Babushkina, M. P., Koretskaya, A. I., Zhuravlev, L. V., Kudryavtsev, G. I. 1985. A Mathematical Model of the Viscosity of Dilute Solutions of Rigid-Chain Polymers. Translated from Khimicheskie Volokna, 2, 20-24. |
|