Journal of Polymer and Biopolymer Physics Chemistry
ISSN (Print): 2373-3403 ISSN (Online): 2373-3411 Website: https://www.sciepub.com/journal/jpbpc Editor-in-chief: Martin Alberto Masuelli
Open Access
Journal Browser
Go
Journal of Polymer and Biopolymer Physics Chemistry. 2015, 3(1), 1-5
DOI: 10.12691/jpbpc-3-1-1
Open AccessReview Article

Acoustical Studies of Molecular Interactions in the Solution of Anti-Malarial Drug

Ritesh Ramdasji Naik1, , Sheshrao Vitthalrao Bawankar1 and Vilas Maruti Ghodki1

1Jankidevi Bajaj College of Science, Jamnalal Bajaj Marg, Civil Lines Wardha

Pub. Date: February 12, 2015

Cite this paper:
Ritesh Ramdasji Naik, Sheshrao Vitthalrao Bawankar and Vilas Maruti Ghodki. Acoustical Studies of Molecular Interactions in the Solution of Anti-Malarial Drug. Journal of Polymer and Biopolymer Physics Chemistry. 2015; 3(1):1-5. doi: 10.12691/jpbpc-3-1-1

Abstract

In the present study ultrasonic velocity (U), density (ρ) and viscosity (η) have been measured at frequency 1 MHz in the binary mixtures of chloroquine phosphate with water in the concentration range (0.1 to 0.0125 %) at 303 K,308 K,313 K using multi frequency ultrasonic interferometer. The measured value of density, ultrasonic velocity, and viscosity have been used to estimate the acoustical parameters namely adiabatic compressibility (βa), relaxation time (τ), acoustic impedance (z), free length (Lf), free volume (Vf) and internal pressure (Πi), Wada’s constant (W) to investigate the nature and strength of molecular interaction in the binary mixture of chloroquine phosphate hydrochloride with water. The obtained result supports the complex formation, molecular association by intermolecular hydrogen bonding in the binary liquid mixtures.

Keywords:
chloroquine phosphate free volume acoustical parameters ultrasonic velocity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  E. W. Breitbart, W. Rehpenning, Hautkr 58, 975-87 (1983).
 
[2]  G. Gassenmaier, F. Kiesewetter, H. Schell, M. Zinner, Hautarzt 41, 360-4 (1990).
 
[3]  J. Blitz, Fundamentals of Ultrasonics, Butterworth & Co. Ltd. London,(1963).
 
[4]  M. K. S. Suslick, Ultrasound: It’s Chemical, Physical and Biological Effects, VCH, Weinheim, (1988).
 
[5]  T. J. Mason; Ed., Sonochemistry. The use of ultrasound in chemistry, Roy. Soc. Chem., (1990).
 
[6]  N., Kulkarni, B. Moudgil, M. Bhardwaj, Am. Cer. Soc. Cer. Bull 73, 6 (1994).
 
[7]  M. C., Bhardwaj, Proc. Am. Cer. Soc. 89 (1998).
 
[8]  T. Carneim, D. J. Green and M. C. Bhardwaj, Cer. Bull., (1999).
 
[9]  O. Kruger, T. L. Schulze, D. Peters, Ultra. Sonochem. 6, 123-28 (1999).
 
[10]  S. K. Najafi, g.ebrahimi, S. Behjati, defektoskopie 87, (2008).
 
[11]  R. Gomes, M. J. Andrade, M. Santos, S. Lima, R. A. Gouveia, M. M. Ferreira, J. A. Silva, Cardiovascular Ultrasound, 7,36 (2009).
 
[12]  L. Palmowski, L. Simons and R. Brooks;Water Sci. Tech.53(8), 281-288 (2006).
 
[13]  A. Van Itterbeek,Physica 25, 640 (1959).
 
[14]  B. Maxfield and C. Fortunko. Evalu., 41, 12 (1983).
 
[15]  R.J. Dewhurst et al.,Rev. Progress Quantitative Nondestructive Evalu.7B, 1615 (1988).
 
[16]  N.D. Patel and P.S. Nicholson,Rev. Prog. Quant. Nondestructive Evalu. 9, (1990).
 
[17]  K. S. Suslick,Rev. Mater. Sci., 29, 295-326(1999).
 
[18]  A. Ali, A. K. Nain, V. K. Sharma, S. Ahmad, ternary mixtures through ultrasonic Phy. Chem. Liq., 42, 375-83 (2004).
 
[19]  B. T. Smith, W. P. Winfree, Ultra. Sympo. Proce, 2, 754-57 (1984).
 
[20]  J. N. Prassianakis, J. Appl. Poly. Sci., 39, 2031-41 (1990).
 
[21]  K. M. Rajkotia, S. Baluja, P. H. Parsania, Euro. Poly. J., 33, 1005-07(1997).
 
[22]  N. Saint-Pierre, Y. Jayet, Ultrasonics., 36, 783-88 (1998).
 
[23]  V. Kannappan, S. Mahendran, P. Sathyamoorthy, D. Roopsingh, J. Poly. Mat.,18, 409-16(2001).
 
[24]  R. Gomes, M. J. Andrade, M. Santos, S. Lima, R. A. Gouveia, M. M. Ferreira J. Aniceto, Cardio. Ultra. 7, 36 (2009).
 
[25]  S. P. Srivastava, S. Laxmi, 70, 219-23 (1970).
 
[26]  S. Kalahasti, C. S. Babu, A. V. Satyavati,Acustica. 71, 77-78 (1990).
 
[27]  K. S. Rao, B. R. Rao,J. Sci. Ind. Res. 17, 444-47 (1958).
 
[28]  V. H. Khan, K. V. Ramanaiah, Technology,21, 82-87 (1974).
 
[29]  V. S. Soitkar, S. N. Jajooion, Acous. Lett,7, 191-5 (1984).
 
[30]  B. Manikiam, A. V. Narasimham,Ind. J. Pure Appl. Phy. 22, 29-33 (1984).
 
[31]  K. N. Mehrotra, M. Jain, Ind. J. Chem.31, 452-56 (1992).
 
[32]  V. K. Syal, V. Bhalla, S. Chauhan,Acustica 81, 276-78 (1995).
 
[33]  E. S. Balankina, A. K. Lyashchenko, J. Mole. Liqd., 101, 273-283 (2002).
 
[34]  G. L. N. Sastry, V. K. S. Sastry, B. Krishnamurty,Ind. J. Pure Appl. Phy.,6, 637-38 (1968).
 
[35]  M. Mecozzi, M. Amici, E. Pietrantonio, G. Romanelli, Ultra. Sonochem. 9, 11-18 (2002).
 
[36]  C. C. Deshmukh, A. G. Doshi,P. Agrawal, Acta Cien. Indi, 29, 5-8 (2003).
 
[37]  S. Baluja, S. Oza, Fluid Phase Equi.208, 83-89 (2003).
 
[38]  S. Baluja, P. Inamdar, M. Soni,“K” Wuli Hua. Xu, 20, 1104-07 (2004).
 
[39]  Sen S.N, “Acoustics: Waves & Oscillations”, Wiley Eastern Limted,(1990).
 
[40]  A.N.Kannappan & R. Palani, Ind. J.Pure and Appl. Phys. 46A, 54-59 (2007).
 
[41]  P.Vasanth arani, P.Kalaimagal and A.N. Kannappan, Asian J.applied Scien 2 (1), 96-100 (2009).
 
[42]  G.V.Rao, A.Viswanatha sarma, J. Siva Rama Krishna, Ind. J.Pure and Appl. Phys., 43, 345-354 (2005).
 
[43]  S. Fakruddin, C. Srinivasu, N.T.Sarma and N. Kolla, Journal of Chemical, Biological and Physical Sciences, 2 (4), 2004-2008, (2012).