[1] | Witzler, M., Ottensmeyer, P. F., Gericke, M., Heinze, T., Tobiasch, E. and Schulze, M. Non-cytotoxic agarose/hydroxyapatite composite scaffolds for drug release. Int. J. Mol. Sci., 2019, 20 (14), 3565-3583. |
|
[2] | Stefani, R.M., Lee, A. J., Tan, A.R., Halder, S.S., Hu, Y., Guo, X.E., Stoker, A.M., Ateshian, G. A., Marra, K. G. and Hung, J.C.T. Sustained low-dose dexamethasone delivery via a PLGA microsphere-embedded agarose implant for enhanced osteochondral repair. Acta Biomaterialia, 2020, 102 (1), 326-340. |
|
[3] | Zarrintaj, P., Manouchehri, S., Ahmadi, Z., Saeb, M.R., Urabanska, A.M., Kaplan, D. L. and Mozafari, M. Agarose based biomaterials for tissue engineering. Carbohydr. Polym. 2018, 187 (1), 66-84. |
|
[4] | Tako, M. and Nakamura, S. Indicative evidence for a conformational transition in κ-carrageenan from studies of viscosity-shear rate dependence. Carbohydr. Res. 1986, 155 (1), 200-205. |
|
[5] | Tako, M.; and Nakamura, S. Synergistic interaction between κ-carrageenan and locust bean gum in aqueous media. Agric. Biol. Chem., 1986, 50 (11), 2817-2822. |
|
[6] | Tako, M., Nakamura, S. and Kohda, Y. Indicative evidence for a conformational transition in ι-carrageenan. Carbohydr. Res., 1987, 161 (2), 247-255. |
|
[7] | Tako, M. and Nakamura, S. Gelation mechanism of agarose. Carbohydr. Res. 1988, 180 (2), 277-284. |
|
[8] | Tako, M., Sakae, A. and Nakamura, S. Rheological properties of gellan gum in aqueous media. Agric. Biol Chem. 1989, 53 (3), 771-776. |
|
[9] | Tako, M., Teruya, T., Tamaki, Y. and Konishi, T. Molecular origin for rheological characteristics of native gellan gum. Colloid Polym. Sci. 2009, 287 (9), 1445-1454. |
|
[10] | Tako M. and Hizukuri, S. Evidence for conformational transition in amylose, J. Carbohydr. Chem. 1995, 14 (4-5), 613-622. |
|
[11] | Tamaki, Y., Konishi, T. and Tako, M. Gelation and retrogradation mechanism of wheat amylose. Materials, 2011, 4 (10), 1763-1775. |
|
[12] | Tako, M. and Hanashiro, I. Evidence for a conformational transition in curdlan. Polym. Gels Networks, 1997, 5 (2), 241-250. |
|
[13] | Tako, M. and Kohda, Y. Calcium induced association characteristics of alginate. J. Appl. Glycosci., 1997, 44 (2), 153-159. |
|
[14] | Teruya, T., Tamaki, Y., Konishi, T. and Tako, M. Rheological characteristics of alginate isolated from commercially cultured Nemacystus decipiens (Itomozuku). J. Appl. Glycosci., 2010, 57 (1), 7-12. |
|
[15] | Tako, M., Tohma, S., Taira, T. and Ishihara, M. Gelation mechanism of deacetylated rhamsan gum. Carbohydr. Polym. 2003, 54 (3), 279-285. |
|
[16] | Tako, M., Nagahama, T. and Nomura, D. Non-Newtonian flow and dynamic viscoelasticity of xanthan gum., Nippon Nogeikagaku Kaishi., 1977, 51 (8), 513-518.(in Japanese). |
|
[17] | Tako, M. and Nakamur, S. Rheological properties of deacetylated xanthan gum in aqueous media, Agric. Biol. Chem., 1984, 48 (12), 2987-2993. |
|
[18] | Tako, M. Molecular origin for rheological characteristics of xanthan gum. ACS Symp. Ser,, 1992, 489, 268-281. |
|
[19] | Tako, M., Asato, A. and Nakamura, S. Rheological aspect of the intermolecular interaction between xanthan gum and locust bean gum in aqueous media, Agric. Biol. Chem., 1984, 48 (12), 2995-3000. |
|
[20] | Tako, M. and Nakamura, S. Synergistic interaction between xanthan and guar gum. Carbohydr. Res. 1985, 138 (1), 207-213. |
|
[21] | Tako, M. and Nakamura, S. Synergistic interaction between xanthan and D-galacto-D-mannan. FEBS Lett. 1986, 204 (1), 33-36. (Special issue at 17th FEBS Meeting, August 24-26, 1986, West Berlin, West Germany). |
|
[22] | Tako, M. Synergistic interaction between xanthan and tara-bean gum. Carbohydr. Polym., 1991, 15 (3), 227-239. |
|
[23] | Tako, M. Binding sites for D-mannose-specific interaction between xanthan and galactomannan, and glucomannan. Colloid Sur. B Biointerface, 1993, 1 (2), 125-131. |
|
[24] | Tako, M., Teruya, T., Tamaki, Y. and Ohkawa, K. Co-gelation mechanism of xanthan and galactomannan. Colloid Polym. Sci., 2010, 288 (10-11), 1161-1166. |
|
[25] | Tako, M. Synergistic interaction between xanthan and konjac glucomannan in aqueous media. Biosci. Biotechnol. Biochem., 1992, 56 (8), 1188-1192. |
|
[26] | Tako, M. and Hizukuri, S. Gelatinization mechanism of rice starch. J. Carbohydr. Chem., 1999, 18 (5), 573-584. |
|
[27] | Tako, M. and Hizukuri, S. Retrogradation mechanism of rice starch. Cereal Chem., 2000, 77 (4), 473-477. |
|
[28] | Tako, M. and Hizukuri, S. Gelatinization mechanism of potato starch. Carbohydr. Polym., 2002, 48 (4), 397-401. |
|
[29] | Tako, M., Tamaki, Y., Konishi, T., Shibanuma, K., Hanashiro, I. and Takeda, Y. Gelatinization and retrogradation characteristics of wheat (Rosella) starch, Food. Res. Int., 2008, 41 (8), 797-802. |
|
[30] | Tako, M. Molecular origin for thermal stability of schizopyllan. Polym. Gels Network., 1996, 4 (4), 303-313. |
|
[31] | Tako, M. and Hizukuri, S. Molecular origin for thermal stability of rice amylopectin. J. Carbohydr. Chem., 1997, 16 (4-5), 655-666. |
|
[32] | Tako M. Molecular origin for thermal stability of waxy-rice (Kogane) starch. Starch. 1996, 48 (11-12), 414-417. |
|
[33] | Tako, M. and Hizukuri, S. Molecular origin for thermal stability of Koshihikari rice amylopectin. Food Res. Int., 2000, 33 (1), 35-40. |
|
[34] | Rees, D. A. Shapely polysaccharides. Biochem. J. 1972, 126, 257-273. |
|
[35] | Tako, M., Qi, Z. Q. and Toyama, S. Synergistic interaction between κ-carrageenan isolated from Hypnea charoides and galactomannan on its gelation, Food Res. Int., 1998, 31 (8), 543-548. |
|
[36] | Arnott, S., Scott, W. E., Rees, D. A. and McNab, C. G. A. ι-Carrageenan: Molecular structure and packing of polysaccharide double helices in oriented fibres of divalent cation salts. J. Mol. Biol., 1974, 90 (2), 253-267. |
|
[37] | Morris, E. R., Rees, D. A. and Robinson, G. Cation-specific aggregation of carrageenan helices: Domain model of polymer gel structure. J. Mol. Biol., 1980, 138 (2), 349-362. |
|
[38] | Arnott, S., Fulmer, A., Scott, W. E., Dea, I. C. M., Moorhouse, R.; and Rees, D.A. The agarose double helix and its function in agarose gel structure. J. Mol. Biol., 1974, 90 (2), 269-272. |
|
[39] | Mohammed, Z. H., Hember, M. W. N., Richardson, R. K. and Morris, E. R. Kinetic and equilibrium processes in the formation and melting of agarose gels. Carbohydr. Polym., 1998, 36 (1), 15-26. |
|
[40] | Tako, M., Higa, M., Medoruma, K. and Nakasone, Y. A highly methylated agar from red seaweed, Gracilaria arcuate, Botanica Marina, 1999, 42 (5), 513-517. |
|
[41] | Tako, M. and Konishi, T. Discovery of κ-carrageenan-like agarose from red seaweed, Gracilaria coronopifolia. Int. Res. J. Pure Appl. Chem., 2018, 17 (2), 1-11. |
|
[42] | Gamini, A., Toffanin, R., Murano, E. and Rizzo, R. Hydrogen bonding and conformation of agarose in methyl sulfoxide and aqueous solutions investigated by 1H- and 13C NMR spectroscopy. Carbohydr. Res. 1997, 304 (3-4), 293-302. |
|
[43] | Tako, M. Structural principles of polysaccharide gels, J. Appl. Glycosci. 2000, 47 (1), 49-53. |
|
[44] | Tako, M., Tamaki, Y., Teruya, T. and Takeda, Y. The principles of starch gelatinization and retrogradation, Food Nutr. Sci. 2014, 5 (3), 280-291. |
|
[45] | Tako, M. The principle of polysaccharide gels. Adv. Biosci. Biotechnol. 2015, 6 (1), 22-35. |
|